wyﬁ. HM\mmun\Mvno».W\Mw
Tl
i

2
£

—"LTL

(0
£
2
>
g
il
(0
0 _
T
1l
0
_|
L
]
)
0

FAIRCHILD
MICRO SYSTEMS

GUIDE TO
PROGRAMMING

67095664

Copyright Fairchild Camera & Imnstrument Corp. 1976

|
Fairchild Micro Systems FAIRCHILD
|

1725 Technology Drive, San Jose, CA 95110
MICRO SYSTEMS

1AMDLEC U’ WCUNINITEZINIO
SECTION PAGE
! 1.0 INTRODUCTION . . oo e 1-1
: 11 ASSUMED READER BACKGROUND e, 1-1
o 1.2 SUPPORTING DOCUMENTATION . .« o oo e e e e, 141
2.0 THE F8 MICROPROCESSOR SYSTEM ..o o 2-1
21 WHAT IS A MICROPROCESSOR o vvroeene st et e ettt e e et e 2-1
22 SOME BASIC CONCEPTS . - v v oo oo e e e e e, 2-1
221 INSTRUCTIONS, PROGRAMS, DATA AND MEMORYo\ 2-1
2.2, 2 INTERRUPT S ottt et e e e et e e et e e e e e e e e 2-2
; 223 PROGRAMMABLE CLOCKS . .\ oo e e e e e 2-2
224 DIRECT MEMORY ACCESS .+ ..t tvreeereeee e e e e e e e e, 2-2
225 A COMPLETE MICROPROCESSOR SYSTEM - ..oovin e e et 2-3
23 THEEBSYSTEM oo e e e e, 2-4
2.3.1, CHIP AND /O PORT SELECTION .. .o\ttt ee e et e e e e e 2.4
. 24 THE 3850 CPU. .o oo e e e e e e e e e 2.4
281 TIMING .ottt e e e e 2-4
242 CPUREGISTERS - .o v v e e e e e e 2.6
283 STATUS ..o oo oo e e -6
244 3850 INPUT/OUTPUT oot e e 2.7
2.5 THE 3857 PSU. vttt e e e e e e e e e e e e e et e e e 2.7
250 BBEVTIMING - ovoe e e e e e e e e 2.7
252 3851 REGISTERS - oo oo e e e e 2-8
253 3851 INPUT/OUTPUT . nete e oo e e e e e 2-9
| 254 3851 LOCAL TIMER AND INTERRUPT «.tvvteteeee e e e et e et e e, 2-9
: 2.6 THE 3852 DYNAMIC MEMORY INTERFACEo oo e, 2-9
261 BBBZTIMING - ..o e e e e 29
262 3852 REGISTERS &\ttt e e e 2-9
f » ' 263 3852 DIRECT MEMORY ACCESS AND MEMORY REFRESHo oooo oo 2-10
, 27 THE 3853 STATIC MEMORY INTERFACE ...\ oo e e e e, 2.10
2.8 THE 3854 DIRECT MEMORY ACCESS .+ .. uvrtrtseer e et e et e e e, 211
: 281 3854 REGISTERS - . oo oot eeeeeeeee 211
: 282 DMA CONTROL CODESo oo e e 2.12
3.0 FBPROGRAMS .. .o 3-1
31 FLOWCHARTING . . oo oo e e e e e e e e e e e 3-1
: 32 ASSIGNING MEMORY - ..o e e e 3-1
3.3 SOURCE AND OBJECT PROGRAMSo\ e e e e 3.2
4.0 ASSEMBLY LANGUAGE SYNTAX o0 e 41
41 INSTRUCTION TYPES . .ot e e e e e 4-1
A1 COMMENTS - o oo e e 4-1
412 EXECUTABLE INSTRUCTIONS . - oo oo e oo e e e a1
413 ASSEMBLER DIRECTIVES ottt ettt et e e e et e e e e e e 4-1
42 INSTRUCTION FIELDS . . oo oo e e e 4-1
, 821 LABEL FIELD «. v v v e e e e e 4
; 422 MNEMONIC FIELD v vv oo oo e e e e 4-2
: 823 OPERAND FIELD - . oo nv e oo e e e 4-2
i 424 COMMENT FIELD + . vvvvr et e e e e e e e e et e e e e e e 4-2
: 825 ALIGNING FIELDS - oo v oo rnree et o e e 4-3
43 LANGUAGE COMPONENT S . .. ottt et e et et et e e e e 4-4
431 VAUD CHARACTERS . . .o oo e e e e, 4-4
832 CONSTANTS .ottt e et e e e e 4-4
: B33 SYMBOLS oo e e e 4.5
H 434 EXPRESSIONS .« oo oo oo 4-5
_ ' 5.0 ASSEMBLER DIRECTIVES ..o oo 5-1
51 BASE — SELECT LISTING NUMERIC BASE - - oo oo oo 5-1
5.2 DC— DEFINE CONSTANT . oot oo 5-1

TAMDLL VI WwWINTRINTWY (LULIL UYL

SECTION PAGE
53 EJECT — EJECT CURRENT LISTING PAGE e e 5-1
5.4 END — END OF ASSEMBLY i it i ia et e i e e 5-2
5.5 EQU — EQUATE A SYMBOL TO A NUMERIC VALUE 5-2

55.1 A COMPARISON OF THE EQU ANDDC DIRECTIVES, ... i 5-2
56 MAXCPU — SPECIFY MAXIMUM CPU TIMEt a i e nees 5-2
57 ORG = ORIGIN A PROGRAM ittt e ettt a e 5-3
58 SYMBOL — ASSEMBLER PROVIDE A SYMBOL TABLE oo iv e 5-3
5.9 TITLE — PRINT A TITLE AT THE HEAD OF THE ASSEMBLER LISTING c.ooooiiiiiion. 5-3
510 XREF — ASSEMBLER PROVIDE A SYMBOL CROSS REFERENCE LISTING 5-3
511 WHEN TO USE ASSEMBLER DIRECTIVES i i e e e e 5-3

6.0 THE INSTRUCTION SET i e st et ettt e iiai e 6-1
6.1 ADC — ADD ACCUMULATOR TO DATA COUNTER e e 6-2
6.2 Al — ADD IMMEDIATE TO ACCUMULATOR ettt trnemiaim i ae e 6-2
6.3 AM — ADD (BINARY} MEMORY TO ACCUMULATOR ... oot 6-3
6.4 AMD — DECIMAL ADD, MEMORY TO ACCUMULATOR i 6-3
6.5 AS — BINARY ADDITION, SCRATCHPAD MEMORY TO ACCUMULATORovvininnt 6-4
6.6 ASD — DECIMAL ADD, SCRATCHPAD TO ACCUMULATOR 6-4
8.7 BRANCH INSTRUCTIONS . . it v it ie et a i aiaie e s e c e m i aais 6-5

871 BF—BRANCHPMFALSE e e 8-7
6.7.2 BT —BRANCH ON TRUE. i et 6-7
68 Cl— COMPARE IMMEDIATE it it n s e 6-7
6.9 CLR — CLEAR ACCUMULATOR. . ..ot ittt e s s e e aa e c e c ettt n s 6-7
6.10 CM — COMPARE MEMORY TO ACCUMULATOR o e c e 6-7
B.11 COM = COMPLEMENT L. Lttt ittt et it a e e im ittt e s aaaaa e ia it saasrareas 6-8
6,12 DCI—LOAD DU IMMEDIATE it i it e e e e i aenas 6-8
6.13 DI — DISABLE INTERBUPT L. ittt ettt e e et e s e mam e taoar e s 6-8
6.14 DS — DECREMENT SCRATCHPAD CONTENT e e 6-8
B.15 El— ENABLE INTERRUPT .. ittt it ate e e e iiib s aa e s ae e s 6-8
6.168 IN — INPUT LONG ADDRES S . . oottt ettt et ieai e e et m e e o e e 6-8
6.17 INC — INCREMENT ACCUMULATOR i e e B-9
6.18 INS —INPUT SHORT ADDRESS i i i it i s c e iaiaarnanens 6-10
6.19 JUMP — BRANCH IMMEDIATE i ittt it et a s 6-10
6.20 LI— LOAD IMMEDIATE . ..ottt ie e ettt i iia e it c i 6-10
6.21 LIS —LOAD IMMEDIATE SHORT ottt e et m e i imanens 6-10
6.22 LISL — LOAD LOWER OCTALDIGITOF ISAR. i i et e aaas 6-10
6.23 LISU — LOAD UPPER OCTAL DIGIT OF ISAR ... oo e e e 6-11
6.24 LM — LOAD ACCUMULATOR FROM MEMORY o i i 6-11
6.25 LNK — LINK CARRY TC THE ACCUMULATOR 6-11
B.26 LR — LOAD REGISTER ittt e e i e b e 6-11
B8.27 NI = AND IMMEDIATE. i et ia e r e r i a et st e s, 6-11
6.28 NM — LOGICAL AND FROM MEMUORYo et s e ae s 6-12
B.29 NP — NO P it ittt e et et a e s s e s tar e a et a e e e 6-13
6.30 NS — LOGICAL AND FROM SCRATCHPAD MEMORY 6-13
B.31 Ol = OR BMIMED AT E ...ttt e ettt me ot it tis s s as ettt r e asaana et 6-13
6.32 OM — LOGICAL "OR” FROM MEMORY i it st a e 6-13
6.33 OUT — QUTPUT LONG ADDRESSt iititeieieiie i ieieiteasraanam e srneens 6-14
6.34 OUTS — OUTPUT SHORT ADDRESS ...ttt i i it s s aeae e aae e 6-14
6.35 Pl— CALL TO SUBROUTINE IMMEDIATEttt aa e 6-14
68.36 PK — CALL TQO SUBROUTINE DIRECT AND RETURN FROM
SUBROUTINE DIRECT .. oottt i e ettt it e e e e ene 6-14
6.37 POP — RETURN FROM SUBROUTINE e e 6-15
B.38 SL = SHIFT LEFT . . ittt e e et e e ettt m e e 6-15
6.39 SR = SHIFT RIGHT .. .o it it e it e sttt i ittt c s s asea e s a e e 6-15
B.40 ST — STORE TO MEMORY ittt i e r i e e e i ca i enas 6-15
6.41 XDC — EXCHANGE DATA COUNTERS i e aaa e 6-16
642 XI—EXCLUSIVE QR IMMEDIATE. it e a it ia e 6-16
6.43 XM — EXCLUSIVE OR FROM MEMORY0 it 6-16
844 XS — EXCLUSIVE OR FROM SCRATCHPAD i et an e 6-16

I FibrfFisias Wi gl W B W O Bun ¥ W N W ‘vvlll el J

. SECTION PAGE
. . 7.0 PROGRAMMING TECHNIQUES o ittt 7-1
7.1 MANIPULATING DATA IN THE SCRATCHPAD\ttt e e 7-1

711 SIMPLE SCRATCHPAD BUFFER OPERATIONSueiiteiiiaiiiterenneanenans. 7-1

712 INCREMENTING UP, AND DECREMENTING DOWN SCRATCHPAD BUFFERS 7-1

7.1.3 USING SCRATCHPAD REGISTERS AS COUNTERS.oouiie it aenns 7-3

7.1.4 USING SCRATCHPAD REGISTERS FOR SHORT DATA OPERATIONS 7-3

7.2 ROM, RAM AND DATA TABLES\ .t utitt ettt it sttt e et e ieene s 7-4

7.21 READING DATA OUT OF TABLES IN ROM\t vttt iaeaie e 7-4

7.22 ACCESSING DATA TABLES IN BAM\ttt et i e e e ae e 7-4

73 SUBROUTINES © ..o oo e e 7-6

731 THE CONCEPT OF ASUBROUTINEiiiiitit et it 7-6

7.3.2 SUBROUTINE PROGRAM STEPS 0ottt it it et et 7-7

733 SIMPLE SUBROUTINE CALLS AND RETURNS ittt e 7-7

7.3.4 NESTED SUBROUTINES ... oo@ ottt et een it ettt et et e e e e 7-8

7.35 MULTIPLE SUBROUTINE RETURNS\ttt et iiee et eitirinae e 7-12

7.3.6 PASSING PARAMETERS\ttt er ettt ettt 7-13

T MACROS ... ettt e e 7-14

7.4 DEFINING AND USING MACROSo \etent ettt et et 7-14

742 MACROS WITH PARAMETERS\ 0ttt ittt et ae e ceee e 7-14

743 RULES FOR DEFINING AND USING MACROS\t ettt iiaiee it ne 7-15

744 WHEN MACROS SHOULD BE USED.\ ettt et ineeanee e e 7-15

75 JUMP TABLES . ..o\ttt ettt sttt e e e 7-15

7.5 JUMP TABLE USING JUMP INSTRUCTIONSunnt ittt ataitiiiene e iaanees 7-16

752 JUMP TABLE USING ADDRESS CONSTANTS0ivimiiinetai e ieeiaateanann 7-16

753 JUMP TABLE USING DISPLACEMENT TABLESuiueteiineiaiaeaeaeainien, 7-16

. . 7.6 STATUS, BITS AND BOOLEAN LOGIC ..\ v e teen ettt et ohceer e eae e et 7-17
- 7.6.1 MANIPULATING INDIVIDUAL BITS ...\ttt ittt ae e e ey 7-17
762 TESTING FOR STATUS ...\ttt ittt ittt ettt et e et e e 7-18

7.7 POWERING UP AND STARTING PROGRAM EXECUTIONoiiiiiiiiiii i 7-18

8.0 INPUT/OUTPUT PROGRAMMING\ ittt ettt e e e 8-1

8.1 PROGRAMMED 1/O\ttt it e ot e et oot et e e 8-1

8.1 POLLING ON STATUSo\ttt ettt it sttt et e e e 8-1

812 DATA, STATUS AND CONTROLSuu... S TR UUR 8-2

8.1.3 PARALLEL DATA AND GONTROL PORTSuuir ettt aeait it 8-3

8.2 INTERRUPT /O ..o oot et e e e e e et e e e e 8-3

8.2.1 THE INTERRUPT SEQUENCE\t tnt et ettt st et e et e et eae s 8-3

8.2.2 ENABLING AND DISABLING INTERRUPTStiutuitinetnianne e 8-4

8.2.3 INTERRUPT PRIORITIES\ttt ettt ettt 8-4

8.24 PROGRAM RESPONSE TO AN INTERRUPT. ...\ttt etereieat e it 8-5

8.2.56 MAKING 3851 PSU INTERRUPT ADDRESS PROGRAMMABLEcooeeenns 8-5

8.2.6 SIMPLE /O INTERRUPTS .. .00ttt et e ittt et et e et es e 8-5

8.2.7 A SAMPLE PROGRAM0uriritiit et ate e et rt e e 8-6

83 LOCAL TIMERS (PROGRAMMABLE TIMERS). 0ottt ettt ae e 8-7

831 LOCAL TIMER 1/ PORTS ...ttt ettt ittt et 8-7

83.2 PROGRAMMING LOCAL TIMERS\onontttr ettt ee it aiie e aeaneeeen 8-8

833 A PROGRAMMING EXAMPLE — THE TIME OF DAY.........oovioiiioniaiaiiee., 8-8

8.4 DIRECT MEMORY ACCESS .. .\ottntn et enn it st ettt et et e e 8-9

8.4.1 WHEN TO USE DMA oottt et 8-9

8.4.2 PROGRAMMING DMA ... ettt et e 8-10

8.4.3 CATCHING DMA ONTHE FLY . .00\ttt iniit e et e ot et e et e et 8-11

. . . 9.0 PROGRAM OPTIMIZATION i i ittt ettt e et e e e e e 9-1
; 9.1 COUNTING CYCLES AND BYTES\ttt tttt it et et te e et et et et e 9-1
'- 9.2 ELEMENTARY OPTIMIZATION TECHNIQUES\ eeun it it ettt et e e caen s 9-1
9.2.1 SCRATCHPAD AND RAM MEMORY\ttt ittt aie it et et e 9-1

9.2.2 IMMEDIATE INSTRUCTIONS ... \ttiuteretentteeneeeatee e imae e ae et eie 9-1

TMDLL WI WWiINT LIV W 1LULIL WY

SECTION PAGE
9.2 3 SHORT INSTRUCTIONS .. . i i e e e e et e e 9-7
9.2.4 USE OF DS INSTRUCTION TO DECREMENT AND TEST it ie s ieianaaians 9-7
925 USE OF THE BR7Z INSTRUCTION ... i e et et e it it a e e eas 9-7
9.3 PROGRAMMING FOR SPEED OR MEMORY ECONOMY i e ans 9-2
9.31 MACROS AND SUBROUTINES . .. it e et a et ia i e 9-2
9.3.2 TABLE LOOKUPS VERSUS DATA MANIPULATION e 9-3
10.0 SOME USEFUL PROGRAM S e 10-1
101 GENERATING TEXT ..ttt i et et e et e e e ettt et i et a et e s 10-1
10.1.1 SIMPLE AND DEDICATED TEXT PROGRAMS i 10-1
10.1.2 UNPACKING DECIMAL DIGITS . .. o i i i e e i et e e aas 10-1
T0.1.3 VARIABLE TEXT .. it it ettt et et e e e e e e e s 10-1
102 MULTIBYTE ADDITION AND SUBTRACTION e et i a e 10-2
10.2.1 16-BIT, BINARY ADDITION AND SUBTRACTIONo it i 10-2
10.2.2 MULTIBYTE BINARY OR DECIMAL ADDITION AND SUBTRACTION 10-3
103 MULTIPLIC AT N . e ettt it ettt et et et e it et a et e ae it a e st s 10-3
B I 1LYy T 10-5
APPENDIX A BINARY NUMBER SY STEM .ttt a e et e e et i et et et e i A-1
APPENDIX B AS T DS . . e e e e e e e e B-1
APPENDIX C CONVERSION TABLES/ TIMER COUNT S ... i e e i it e e C-1
APPENDIX D INSTRUCTION SUMMA Y . ittt e ettt e et e et i e mae e s ae e aia s D-1
LIST OF ILLUSTRATIONS
FIGURE PAGE
2-1 MUBITUNCEION Logic DeViCe ot i e e e e ie e 2-1
2-2 Data and Instruction Paths in a Multifunction Logic Device...... oo i 2-1
2-3 Program P Being Interrupted to Execute Program R e 2-2
2-4 Logical Camponents, Data Paths and Control Paths in any Microprocessor System 2-3
2-h F8 Microprocessor System ConfigUrations e o et e e 2-4
2-6 Logical Functions of the 3850 CPU et e 2-5
2-7 Lt €W o L TN T 1T ¢ 2-5
2-8 3850 CPU Programmable Registers, e e e e 2-6
2-9 Logical Functions of the 3851 PSU i i e i i i 2-8
2-10 Logical Functions of the 3852 DMIDEVICEty cae e iaee s 2-10
2-11 Logical Functions of the 3853 SMi Device 2-11
2-12 Logical Functions of the 3854 DIMIA DeVICEt hun i e i in e aa e eeees 2-12
3-1 Flowchart for a Program to Move Data from One RAM Buffer to Another. e 3-1
3-2 Flowchart for Program to Add Two Multibyte Numbers and Qutput the Result 3-2
3-3 Source and ObJect Programs e i 3-3
4-1 Four Comment Lines (Shaded) in a Source Program it i i it ir i 4-1
4-2 Label Fields (Shaded} in 8 SOUICe Program it i et ettt iin e 4-2
4-3 Mnemonic Field {Vertical Shaded} in @ SoUrce Programottt i ias et 4-2
4-4 Operand Fields (Shaded} in @ Source Program. it i i e e 4-3
4.5 Comment Fieids {Shaded) in @ SoUrCe Program ottt e i it e a e et 4-3
4-6 Scurce Program with Unaligned Fields ey 4-3
4-7 Symbols in @ SOURCE Programm. it e e i e e e e 4-5
6-1 Assembler Directives {Shaded) in @ Source Programo it i e i 5-1
6-1 Generation of a Displacement Object Program Byte in Response to a Forward Branch................ 6-b
6-2 Generation of a Displacemnt Object Program Byte in Response toc a Backward Branch 6-6

@

®

FIGURE

7-1
7-2
7-3

81
8-2
g3
8-4

9-1

TABLE

21
2-2

4-1

6-1
8-2
6-3
6-4
6-5
6-6
8-7

7-1
7-2

8-1

TABLE OF CONTENTS (Cont’d)

Use of H, Q and DC1 Registers to Hold Three Buffer Addressesot
Subroutine, as Compared 10 8 MACIO L i e it e
SCrAatChPAO S1ACK v v o e it i et e e et e e e e e

Daisy Chaining and Interrupt Priority Determination i ees
Two Levels Of IMerrUpt . .. oo i i e it i i
Two Devices Servicing a Keyhoard to Cassette Application
How BUFC and BUFD are used to Control DMA Operationsc oo,

Counting Cycles and Bytes ou it e

LIST OF TABLES

SUMMARY Of GHALUS Bt . . oot o ittt it ittt i e e
Hexadecimal Addresses of Four I/Q Ports used as Registers by Four 3854 DMA Registers

Summary of ReStricted CharaClBrS r ittt e it e e et aman i im e i ta e eaaee s

Operand SymMbOlS e
Operands Referencing Scratchpad Memory, as Specified by Symbol Sreg o oo
Branch Conditioms it e e e e e e e e e
Branch Conditions for BF INSiruction e e i e e e
Branch Conditions for BT INStruchion ot e
1;0 Port Address Assignments e e e
LR instruction Operand Definifions e e e it b e

Scratchpad Memory Utilization i i i i e i e e
Use of a Memaory Stack for Executing Multiple Level Subroutineso e

Contents of Interrupt Control /O Ports e e

PAGE

7-6
7-7
7-10
8-4
8-4
8-6
8-10

9-2

b ¢

o @

INTRODUCTION

This manual explains how to write programs for the Fairchild
F8 microprocessor system, and how thess F8 programs cause
a microprocessor system to function as a discrete logic
replacement.

The Fairchild F8 family of logic devices consists of a Central
Processing Unit and a number of complementary devices,
manufactured using n-channel Isoplanar MOS technology.
Components of the F8 family include the following devices:

1) The 3850 Cantral Processing Unit {CPU}

2) The 3851 Program Storage Unit (PSU)

3} The 3852 Dynamic Memory Interface (DMI)
4) The 3863 Static Memory Interface (SMI)

5) The 3854 Direct Memory Access (DMA)

Complete microprocessor based systems may vary in size and
complexity from as little as two devices—the 3850 CPU and
the 3851 PSU—to large systems incorporating the above
five devices, plus any standard static and/or dynamic Random
Access Memory (RAM) devices.

The following are some general characteristics of this micro-
processor device set:

® 8-bit data organization

® 2 s instruction cycle time

® Over 70 microprocessor instructions

® 64 general purpose registers in the CPU

® Binary and decimal arithmetic, and legic functions
® Up to 65,536 bytes of ROM and RAM, inany combination
® No need for special external interface devices

[ntarnal, programmable real time clocks

® Internal power on and reset logic

& Multi-level interrupt handling

® Clock and timing circuits

1.1 ASSUMED READER BACKGROUND

This manual has been written for logic designers with little
or no background in programming.

The reader is assumed to understand the following:

1} Binary, octal, binary coded decimal and hexadecimal
number systems

2) Signed and unsigned binary arithmetic

3) Boolean logic

4) ASCIl and EBCDIC character codes

For readers without the assumed background, a summary of
this basic information is given in Appendix A.

1.2 SUPPORTING DOCUMENTATION

The following manuals provide additional information on the
F8 microprocessor:

1) F8 Circuit Data Book which provides electrical param-
eter data for all Fairchild F8 Microprocessor devices.

2) F8 Timeshare Operating Systems Manual which ex-
plains how to assemble and debug F8 Microprocessor
programs on NCSS and GE Timeshare Networks.

3) F8 Circuit Reference Manuval which describes the
interactive timing and signal sequences which occur
between devices in the F8 Microprocessor family,

4) F8S and FBSEM Users Manuals which describe how
to assemble and debug microprocessor programs on
the F8S and FBSEM hardware modules.

5) F8 Formulator Users and Reference Manuals which
describe how to use and maintain Fairchild’s F8
Formulator developmental hardware.

P 9

F o

THE F8 MICROPROCESSOR SYSTEM

The purpose of a microprocessor system is to replace discrete
logic; but in order to understand why a microprocessor system
is effective as a logic design tool, it is first necessary to
understand what is in a microprocessor system,

2.1 WHAT IS A MICROPROCESSOR?

After a product has been fabricated using discrete logic com-
ponents, it consists of one or more logic cards; aach card may
be visualized as generating a variety of signals output at the
card edge, bagsed on signals input at the card edge. The logic
devices on the card are specifically selected and sequenced
to generate the required product.

If the same product is implemented using the F8 micropro-
cessor, the F8 CPU and its five supporting devices can be
made to function in the same way as any one of many mil-
liong of different discrete logic device combinations. In other
words, the F8 CPL, optionally in conjunction with the sup-
porting devices, has the capacity to duplicate the performance
of any discrete logic design, limited only by speed consider-
ations. F8 microprocessor systems have a 2 s instruction
cycle time. The functions that will be performed by the F8
microprocessor system are established by a sequence
of “‘instructions”™, stored in @ memory device as a sequence
of binary codes. Taken as a whole, the sequence of instruc-
tions are referred to as a “'stored program™.

2.2 SOME BASIC CONCEPTS

Any logic device may be raconstituted from some or all of
the following basic functions:

1) Binary addition

2) The logical operations AND, OR and EXCLUSIVE-OR

3) Shifts and rotates of binary digit sequences which
are being interpreted as numerical entities {e.g., a
byte = eight bits).

A general purpose logic device can be created by implement-
ing the basic functions listed above on a single chip. If the
single chip is to duplicate the performance of other logic de-
vices, it must be provided with a sequence of instructions that
enable the required logic in the proper order, pius aa stream
of data that is operated on by the specified logic. This is
illustrated in Figure 2-%,

INSTRUCTIONS IN

MULTIFUNCTION

DATA LOGIC DATA
—_— e
iN DEVICE aut
{CPU)

Fig. 2-1. Multifunction Logic Device

In order to function, the multifunction logic device will need
the following parts:

A} An Arithmetic Logic Unit {ALU), containing the neces-
sary basic logic functions.

B) A control unit, which decodes instructions and enablaes
elements of the ALU, as needed.

C) Registers to hold instruction codes and data, as needed.

D} Data paths within the CPU, and batween the CPU and
external devices,

Parts A), B}, C), and D) are the basic components of any
Central Processing Unit {CPU), A CPU must be the focal point
of any computer—maxi, mini or micro.

Referring to Figure 2-1, where do “instructions” and “data
in” come from, and where will “data out” go? There are two
possibilities: memory or external devices.

Refer to Figure 2-2. Memory is a passive depository of infor-
mation where data or instruction codes may be stored.
Memory must be divided into individually addressable loca-
tions, each of which can store one element of instruction
code or one element of data. In an F8 system, each individ-
vally addressable location will be an 8-bit data unit (a byte),
since the F8 is an 8-bit microprocessor.

MEMORY

INSTRUCTIONS

DATA | muimiFuncTion | DATA
LOGIC
DEVICE
N ICPU) ouT
170 FORT EXTERNAL DEVICES 10 PORT

Data and Instruction Paths in a Multifunction Logic
Device

Fig. 2-2.

“External devices” refer to any data source or destination
beyond the perimeter of the microprocessor system. Drawing
an analogy with a logic card, “external devices” will refer to
the world beyond the card edge connector. Data passes be-
tween the microprocessor system and external devices via
Input/Output {1./0O) ports.

2.2.1

For a microprocessor to perform any specified operation, it
will receive and process a sequence of instructions. The se-
quenca may be very long— numbering even into the thousands

Instructions, Programs, Data and Memory

of instructions. A sequence of instructions that can be taken
as a unit is called a program; the purpose of this manual is
to describe how a program is constructed out of a sequence
of instructions.

Data may {and usually will} be stored in memory. In fact, the
256 possible combinations of eight binary digits {or byte) may
represent any of the following types of information:

1} An instruction code

2} Numeric or address data that is part of an instruction’s
code

3) Numeric or address data that is independent of
instruction codes

4} A coded representation of a letter of the alphabet, digit
or printable character

It would be impossible to determine the content of any
memory byte by random inspection. This does not cause prob-
lems, since a program will occupy one or more segments of
contiguous memory bytes, and data resides in biocks of
memory as assigned by the programmer.

2.2.2

The number of programs which may be stored in memeory is
limited oniy by the amount of memory available for program
storage. If ten programs were stored in memeory, by simply
identifying one program, the same microprocessor system
could be made to function in one of ten different ways.

Interrupts

If a microprocessor has more than one program available for
execution, how is the one program which is to be executed
identified? There are two separate and distinct ways in which
a program may be identified for execution:

A} Program identification may itself be a programmed
function; for example, each program, upon completing
execution, may identify the next program to be exe-
cuted. The key to this method of program identification
is that it is internally controlled, within the logic of
the microprocessor system.

B) Programs may be called into execution by external

devices; this may happen even if another program is

in the middie of execution. For example, take the sim-
ple case of a microprocessor that is recording data
input by an external instrument; while receiving data
from the external instrument, the microprocessor per-
forms numerical operations on the collected data.
Program executions are illustrated in Figure 2-3.

: e S e

NN/

Fig. 2-3. Program P Being Interrupted to Execute Program R

2-2

In Figure 2-3, P represents the program performing numerical
operations on the data. Pata is collectad by repeated execu-
tion of program R. Events occur as follows:

1) Program P is executing.

2) When the external instrument has data which it is
ready to transmit, it sends an interrupt signal (I} to
the microprocessor, along with the starting address
of program R,

3) Upon receiving interrupt signal |, the microprocessor
does some elementary “housekeeping”; for example,
it saves the address of the program P instruction it
was about to execute, plus any intermediate databeing
held in temporary storage registers,

4) The microprocessor completely executes program R.

§} Upon completion of program R exacution, the micro-
processor restores values saved in step 3, then con-
tinues program P execution from the point where
interrupt | occurred. Thus execution of program P ap-
pears to have gone into *suspended animation’ for
the duration of program R execution.

The sequence of events illustrated in Figure 2-3 is quite com-
maon in microprocessor applications, and is called an external
intarrupt. Interrupt programming is described in Section 8.2

2.2.3 Programmable Clocks

There are many microprocessor applications in which it is
important that the microprocessor system be synchronized
with the real time of the outside world. Such synchronization
is accomplished using programmable clocks, which are reg-
isters that count at a known rate. When the shift ragister
counts to zero, the event is marked by an interrupt {as de-

_cribed in Section 2.2.2); in this case the interrupt is defined

as a “time out’” interrupt. Since the rate at which the clock
register counts will be known for any microprocessor system,
setting a real time interval simply invelves loading the
register with the correct initial count.

2.2.4 Direct Memory Access

Notice from Figure 2-2 that data may be input to the micro-
processor from memory or from an external device, via an
|/Q port.

It is easy to imagine how, in many applications, data will be
transferred from an external device, via an 1/0 port and the
CPU, to memory; the data will then be accessed from memory
in the normal course of program execution.

It makes little sense to tie up the logic of the CPU while shunt-
ing data from an /0 port to memory; therefore, provisions
are made for Direct Memary Access (DMA), whereby data is
moved betwaen memory and an /0 port”, bypassing the
CPU entirely. The DMA "1/0 port” is called a “DMA channel™.

In order to implement DMA, the microprocessor system must
have logic {outside the CPU) which provides the following
three pieces of information:

1) A starting memory address for a data block.
2) A byte length for the data block.
3) The direction of the data movement.

If the microprocessor has this logic, data may be transferred
between memory and an | /0 port independent of, and in
parallel with, unrelated CPU-memory operations.

o9

s 9

5 9

2.2.5 A Complete Microprocessor System

To summarize, a complete microprocessor system will have
the following logical components:

1} A CPU, which is the multifunction logic device of the
system.
2) Memory (of various types and combinations), in which
programs and data are stored.
3) Memory interface logic which identifies:
a) the next memory location which must be accessed
to fetch instruction codes for the CPU, and
b) the memory location from which a byte of data will
be read, or to which a byte of data will be written.

4) 1/0 ports, through which bidirectional data pas-
ses between the microprocessor system and external
devices.

5) DMA, logic, which provides a direct data path betwean
memory and external devices, bypassing the CPU.

6} Interrupt logic, which causes the CPU to tamporarily
suspend current program execution. Along with each
interrupt request signai, interrupt logic identifies the
program which is to implement operations required by
the source of the interrupt.

7) Real time clock legic, which synchronizes the entire
microprocessor system with tha real outside worid by
generating interrupts at variably definable time
intervals.

Figure 2-4 illustrates these seven logical components, with
associated data flow paths,

~#— s DATA PATHS
s = — — = CONTROL PATHS

REAL
TIME

MEMORY

MEMORY
INTERFACE
LOGIC

DMA
LaGIC
DMA
CHANNEL
INTERRUPT
LOGIC
-

b 1:0 PORTS

-~

-
110 PorTs

MICROPROCESSOR

SYSTEM

B B

OUTSIDE
WORLD

2-3

Fig. 2-4. Logical Componants, Data Paths and Control Paths in any Micraprocessor Systemn

2.3 THE F8 SYSTEM

There is no ene-for-one correspondence between the logical
components of a microprocessor system, as illustrated
in Figure 2-4, and the devices of the FB, or any other micro-
processor product. In fact, it is counter-productive to extend
the concept of isolating functions on separate devices
because it reduces the flexibility of 2 microprocessor system
to satisfy simple, as well as complex, applications needs.
More than any other microprocessor product, the F8 combines
many functions on single chips, thus allowing simple systems
to be implemented with as few as two devices, and complex
systems to be implemented using many devices.

Figure 2-5 illustrates the way in which F8 microprocessor
system devices intarconnact to give a variety of system
configurations.

The simplest F8 system contains one 3850 CPU and one
3851 PSU.

Another very simple F8 system consists of one 3850 CPU,
plus either one 3852 DMI intarfaced to a single dynamic
memaory, or one 3853 SMI interfaced to a single static
memory device.

A fully expanded F8 system may have one 3860 CPU, one
3852 DMI and one 3853 SMI device, up to four 3854 DMA
devices, plus 3851 PSU and static or dynamic memory devices
in any combination, providing not more than a combined total
of 65,536 bytes of memory are directly addressed by the 3850
CPU. It is possible to address more than 65,536 bytes of
memaory using special techniques which are described in the
F8 Circuit Reference Manual.

| 0-—1\-1 ¢
3850 / w7
CPU —
/0 !
f—a 7
——-
1/Q i
3861 .
PSU — ¢
/o I 7
W N et
@ 3861 VoL g
@ PSU —]
- 1/0 H
g —m 7
=
2
=]
Q
=]
E 3B53)
: SMI TO STATIC READ/WRITE MEMODRY
5
o
B2 —
3:M| TO DYNAMIC READ/WRITE MEMORY
,__CONTROL
ags4
OMA] 7
DMA CHANNEL
Fig. 2-5. F8 Microprocessor System Configurations

2-4

2.3.1 Chip and 1,0 Port Selection

Every 3851 PSU has two permanent select codes-—a chip
select code and an 1/0 port select code,

The 3851 PSU chip select code is a six digit binary number,
which is always the highest six bits for memory addresses
on that device:

15141312]1]098?6543210

DI x[x[x[x|a[A]ala[a[a]A]a[a] 4]

Chip Select

Sy -y

Memory Address for Individual Bytes on Chip

The 3851 PSU 170 port selact code is glso a six digit binary
number, and is independent of the chip select code. The 170
port select code is always the highest six bits for 170 port
numbers on that device:

7 6 8 4 3 2 1 0
XX x]x|x]al A
I

170 Port Select

My -

10O Port Number

The 3852 DMI and 3853 SMI devices have a fixed (pre-
assigned) 170 port select code, but have no on-board chip
select code,

The dynamic and/or static memories associated with the
2852 DMI and 3853 SMI derive their select function from
external logic. This allows the system designer complete
freedom with respect to memaory space partitioning.

Every F8 microprocessor system must have one memory
device whose byte addresses start at O; the first ingtruction
executed when an FB system is powered up is the instruction
stored in memory byte O.

2.4 THE 3850 CPU
Figure 2-6 illustrates the logical functions implemented on
the 3860 CPU.

The heart of the F8 microprocessor system is the 3850 CPU,
which contains data manipulation logic in an Arithmetic Logic
Unit (ALU). Eight-bit instruction codes are decoded by a
Control Unit {CU), which controls execution of legic internal
1o the 3850 CPU and generates signals controlling operations
of other devices in the system.

2.4.1 Timing

System timing is illustrated in Figure 2-7. System timing is
controlled by an external or internal clock, which provides
clock pulses of not less than 500 ns and not more than 10us.
in response to instruction codes, the CPU creates instruction
timing cycles of either 4 or 6 clock pulses. The fastest instruc-
tion will execute in one short {4 clock pulse) cycle; the slowest
instruction will execute in one short {4 clock pulse) cycle plus
thrae long (6 clock puise) cycles.

5o

5 O

F 9

p—e. DATA PATHS

MEMORY
INTERFACE
LOGIC

- ——— = CONFROL PATHS
REAL
DMA
TIME
cLOCK Losic
-~
r ! I
p ~ / |°v7‘P
, ~ /
/’ N /
4 \\ I
/ N I
/ |
/ > '
/
! INTERRUPT
/ LOGIC
MEMORY

MICRUPROCESSOR
SYSTEM

DMA
CHANNEL

1/0 PORTS

——

QUTSIDE
WORLD

Fig. 2-6. Logical Functions of the 3850 CPU

CYCLES ﬂ l_

CLOCK
PULSES
| |)

|

| l
| ONE SHORT

Il"' CYCLE I

—

oNELONG |
CYCLE |

Fig. 2-7. Instruction Timing

2.4.2 CPU Registers

The 3850 CPU has an 8-bit Accumulator Register and a
Scratchpad consisting of 64 8-bit registers. In addition there
is a 6-bit Indirect Scratchpad Address Register (ISAR), which
is used to address the scratchpad and a 5-bit Status Register
(the W register), which identifies selected status conditions
associated with the results of CPU operations. Figure 2-8
illustrates the CPU register.

786543 21 0=a—BIFNO
ACCUMULATOR
BYTE
ADDRESS
54 3 2 1 0 BITNOD. SCRATCHPAD DECIMAL OCTAL
ISAR e 0
1 1
—_—

HI Lo 2 2
N — 1 '
OCTAL ADDRESS GF !]
SCRATCHPAG BYTE | 1

| 1

4 32 2 1 Q-=-—8THNC J 5 11

WHEGISTER " " " .
H " 13
KU 1z 14
i 12 15
au 14 18
Yia 15 17
18 20

1 I |

I i 1 |

] | 1 1

1 1 1

58 72

59 72

80 74

6 75

62 76

82 7

Fig. 2-8. 3850 CPU Programmable Registers

Data in the Accumulator may be manipulated by the ALU.
individual instructions allow the contents of tha Accumulator
to be operated on in a variety of ways. Data may be trans-
ferred between the Accumulator and other CPU registers, or
batween the Accumulator and data locations outside the CPU.

The Scratchpad is the principal depository of frequently acces-
cessed data and. in small microprocessor configurations, may
represent the system’s only Read/Write Memory. Because
the Scratchpad actually resides on the CPU, instructions that
reference Scratchpad bytes execute in one short cycle; these
are the fastest executing F8 instructions.

The first 16 Scratchpad bytes can be identified by instructions
without using the ISAR. The remaining Scratchpad bytas are
referenced via the ISAR; i.e., the ISAR is assumed to hold
the address of the Scratchpad byte which is to be referenced.
Observe that the first 16 bytes of the Scratchpad can also be
refarenced via the ISAR.

The ISAR should be visualized as holding two octal digits, Hi
and LO. This division of the ISAR is important, since a number
of instructions increment or decrement the contents of the
ISAR when referencing Scratchpad bytes via the ISAR. This
allows a sequence of contiguous scratchpad bytes to be easily
referenced. However. only tha low order octal digit (LO) is
incremented or decrementad; thus ISAR is incremented from
027 to 0°20". not to O’30". Similarly, 1SAR is decremented

2-6

from 0°20’ to 0’27, not to 0'17". This feature of the ISAR greatly
simplifies many program sequences, as will be described in
Section 7.

Seven of the Scratchpad registers (9 through 16} have special
significance. Data from register 9 may be moved directly be-
tween register 9 and the W register, bypassing the Accumulator.
Registers 10 through 15 are connected to memoery interface
logic, as described in Sections 2.5, 2.6 and 2.7.

2.4.3 Status

A number of operations performed by the Arithmetic Logic
Unit (ALU) generate results, selected charactaristics of which
are important to logic sequences, Table 2-1 summarizes the
W register status bits, which are individually described next.

OVERFLOW = CARRY7 (+) CARRYg

ZERD = Alu; Allg ALUg ALU4 ALU3 ALUz ALy ALUg
CARRY = CARRY7
SIGN = ALU7

Table 2-1. A Summary of Status Bits

SIGN

When the results of an ALU operation are being interpreted
as a signed binary number, the high order bit (bit 7] repre-
sents the sign of the number {see Appendix A). At the con-
clusion of instructions that may modify the Accumulator bit 7,
the S bit (W register bit O} is set to the complement of the
Accumulator bit 7.

CARRY

The C bit {W register bit 1) may be visualized as an extension
of an 8-bit data unit: i.e., bit 8 of a 9-bit data unit. When
two bytes are added and the sum is greater than 255, the
carry out of bit 7 appears in the C bit. Here are some examples:

C 7664321 0-=Bit Number
Accumuiator contents: 01100101
Value added: 01110110
Sum: 0 110110611

7 4= Bit Number
Accumulator contents: 1
Value added: 1
Sum: 1 O

Thare is a carry, so C is set to 1.

ZERO

The Z bit (W Register bit 2) is set whenever an arithmetic or
logical operation generates a zero result. The Z bit is reset to &
when an arithmetic or logical operation could have generated
a zero result, but did not.

¢ 9

¢

i
I
!

Load instructions do not affect status bits.

a) The Accumulator contains 01101011, The value
00010101 is added to the Accumulator:

Accumulator contents: 01101011
Value added: 00010101
Sum: 10000000

The result in the Accumulator is not zero, so the Z bit
is reset to 0. (There is no carry, 50 C is reset to 0).

b) Next, the Accumulator contents are shifted left one
bit position;
765643210 Bit number
{before shift)
0 0 0 0 0 0 00 shifted in
0000000

shifted out<—®
after shift 0

Since the result in the Accumulator is now zero, the
Zbitissetto 1.

¢} Subsequently the value 1101111 is loaded into the
Accumulator. Even though the Accumulator no longer
contains zero, the Z bit remains set at 1 since an Ac-
cumnulator load is neither an arithmetic nor a logical
operation, therefore has no effect on the Z bit.

OVERFLOW

The high order Accumulator bit (bit 7) represents tha sign of
the number. When the Accumulator contents are being in-
terpreted as a signed binary number, some method must be
provided for indicating carries out of the highest numeric bit
{bit B of the Accumulator). This is done using the O bit
(W register bit 3). After arithmetic operations, the O bit is set
to the EXCLUSIVE-OR of Carry Qut of bits 6 and bits 7. This
simplifies signed binary arithmetic as shown in Section 10.3
and in Appendix A. Here are some examplas:

C 76543210 Bit Number
Accumulator contents: 10110011
Value added; 01110001
Sum:1 00100100

There is a carry out of bit 8 and out of bit 7, so the O bit is
resetto G (1@ 1 =0). The C bitis setto 1.

C 76543210 Bit Number
Accumulator contents: 01100111
Value added: Q0100100
Sum: 0 10001011

There is a carry out of bit 6, but no carry out of bit 7; the O bit
is set to 1 {1@0 = 1). The C bit is reset to 0.

When the Overflow bit is set, the magnitude of the number is
too large for the 7-bit numeric field within the byte, and the
sign bit has besn destroyed. However, the 2-bit field made
up of the Carry bit {high order) and the data byte give a valid
9-bit signed binary result.

2-7

ICB AND INTERRUPTS

External logic can after the operations sequence within the
CPU by interrupting ongoing operations, as described in
Section 2.2.2. However, interrupts are allowed only when
the ICB bit {(W register bit 4) is set to 1; interrupts are dis-
allowed when the ICB bit is reset to Q.

2.4.4 3850 Input/Qutput
The 3850 CPU communicates with the outside world in
two ways.

To execute instructions, instruction codes must be input from
the external storage device {probably a 3851 PSU) where
they are being maintained. Data stored in a memory device
may have to be loaded into the CPU in order to meet the re-
quirements of the instruction being executed. This type of
communication between the 3850 CPU and the outside world
is of no immediate concern to an F8 programmer, since it
involvas data flows within the confines of the microprocessor
system, and requires no special considerations beyond an
understanding of instruction execution sequences.

Input/output programming, as the term is commonly used,
refers to data transfers between the microprocessor gystem
and logic beyond the microprocessor system. The 3850 CPU
has two 8-bit, bidirectional ports, via which 8-bit parallel data
may be transferred in either direction, between the 38560 CPU
and logic external to the microprocessor system. The two
3850 CPU 170 ports are identified by the hexadecimal port
addresses H'00" and H'01°.

2.5 THE 3851 PSU
Figure 2-9 illustrates the logical functions implemented on
the 3851 PSU.

The 3851 PSU) provides an F8 microprocessor system with
1024 bytes of Read Only Memory. 3851 memory is usually
used to store instructions, but may also be used 10 store data
that is read, but never altered. In addition, each 3851 PSU
provides two B-bit | /O ports, a programmable timer and
external interrupt processing logic,

The 3851 PSU is the logic device which is modified and re-
placed to reflect a product’s continuing engineering and field
upgrades.

In microprocessor systems, instruction codes are usually stored
in a PSU to prevent accidental erasure. As many as 64 38561
PSU’'s may be connected to one 3850 CPU, yet a single 3851
PSU interfaced to a 3850 CPU, provides aviable microprocessor
systemn with the following capacities;

® 1024 bytes of program storage {on the 3851)

® 64 bytes of Read Write Memory (on the 3850}

@ 4 separately addressable, bidirectional 1/0 ports
{2 on the 3860, 2 on the 3861)

® An external interrupt line

® A programmable clock

2.5.1 3851 Timing
Timing signals created by the 3880 CPU, and iliustrated in
Figure 2-7, control operation sequances in the 3851 PSU.

wp—— - DATA PATHS
= — — = CONTROL PATHS

—_—— —
/—-"' —

DATA

CPL

DMA
CHANNEL

MICROPROCESSOR
SYSTEM

OUTSIDE

WORLD

Fig. 2-9. Logical Functions of the 3851 PSU

2.5.2 3851 Registers

In addition to 1024 bytes of ROM, the 3861 contains three
16-hit address registers, which are described next.

PROGRAM COUNTER (PCO)

This 16-bit register provides the address of the memory byte
from which the next instruction code will be fetched for trans-
mittal to the 3850 CPU. After each byte of instruction code
is fetched, logic internat to the 3851 increments the contents
of PCO to address the next memory byta.

Even though each 3851 PSU contains only 1024 bytes of
memory, PCO preserves a 16-bit memory address. Thus PCO
may be interpreted as follows:

16 14 13 12 11 10 & 4 7 & & 4 3 2 1 0O PCOBI[NO
EENEENEENEERENER
k. o N -
~ T
Chip Select Byte Selact
Within Selectad
Chip

2-8

Each 3851 device has a unique select code that is a perma-
nent mask option; 3861 memory access logic isonly activated
when the six Chip Select bits of PCO match the 3851 select
code. Thus, if more than one 3851 is present in an F8 system,
every 3851 device’s PCO register holds the address of the
memory byte from which the naxt instruction code will be
fetched for transmittal to the 3850 CPU; but an instruction
fetch will actually be executed from one 3851 device only.

The PCO registers of the 3851 devices are logically connected
to 3850 scratchpad bytes 12 and 13, designated as the K
register, and bytes 14 and 15, designated as the Q register
in Figure 2-8. Specific instructions allow the contents of the
K or Q register to be loaded into every PCO register. Specific
instructions allow the PCO registers’ contents to be modified
in order to control microprocessor logic sequences.

Note that in a correctly designed F8 microprocessor system,
when there is more than one 3851 device, every PCO register
will always contain exactly the same address.

=2

8 =

STACK REGISTER (PC1)

Every 3851 device has a 16-bit Stack Register, which is a buf-
fer for the contents of PCO. This allows program execution
sequence to be modified by changing the PCO registers’ con-
tents, while the previous contents of PC0 are saved in PC1;
thus programs may return to the prior instruction aexecution
sequence.

The PC1 registers are logically connected to the 3850 scratch-
pad bytes 12 and 13, designated as the K register in Figure
2-8. Spacific instructions allow the contents of the K register
to be loaded into every PC1 register, or the PC1 registers’
contents to be loaded into the K register.

DATA COUNTER {DC)

Every 3851 device has a 16-bit Data Counter register which
contains the address of the memaory byte (external to the 3850
CPU} from which data is to be accessed. For example, an in-
struction requiring a data byte to be loaded from external
mamaory into the 38560 Accumuiator will fetch the contents
of the data byte addressed by the DC registers.

The DC registers are 18-bit registers, where the high order
six bits {bits 15 to 10} are interpreted as chip select bits, and
the low order nine bits (bits 3 to 0) provide the byte address.

The DCO registers are logically linked to the H and Q registers
in the same way that the PC1 registers are logically linked to
scratchpad register K.

2.5.3 3851 Input/Output

Each 3851 PSU has two bidirectional, 8-bit 1/0 ports. Each
port's address, using binary notation, is XXXXXX00 or
XOXXX01, where the X binary digits are the device’s unique
170 port select code. Note that every 3851 PSU has an |/O
port select code and an independent chip select code.

2.5.4 3851 Local Timer and Interrupt

3851 programmable timer and interrupt logic are accessed
via the binary port addresses YoUXXX11 and X>O00010,
respectively; the X binary digits are the |/Q port select codes
described in Section 2.5.3.

The programmable timer port is a polynomial shift register
which runs continuously, sending a signal to the interrupt
control logic whenever the timer count eguals zero.

Any numeric value between O and 255 may be lgaded into
the programmable timer port by an appropriate instruction
code. If 256.{hexadecimal FF) is loaded into a timer port, the
timer is stopped. Any other value loaded into a timer port is
decremented once every 31 clock pulses (see Figure 2-7);
therefore delays up to 7905 clock pulses may be programmed.

The local interrupt port is loaded by an appropriate instruction,
with a control code; bits 0 and 1 of the controi code are
interpreted as follows:

Bit O
0 0

0
1
1

Function

Disallow all interrupts
1 Enable external interrupts
0 Disallow all interrupts
1 Enabie timer interrupts; -

2-9

If timer interrupts have been enabled and if the 3850 CPU
has enabled interrupts {via the ICB status}, then when the
local timer decrements to O, an interrupt request is transmitted
to the 3850 CPU,

The way in which the local timer and interrupt ports are used
is described in Section 8.3.

2.6 THE 3852 DYNAMIC MEMORY
INTERFACE

Figure 2-10 illustrates the logical functions implemented on
the 3852 DMI device.

The 3852 DMI device interfaces dynamic random access
memory (e.g., Fairchild 3540 RAM) to a 3850 CPU. Dne
3852 DMI device interfaces up to 65,536 bytes of RAM
memory to the 3850 CPU. However, recall that a combined
maximum of 85,536 bytes of ROM and RAM may be addressed
by the 3860 CPU unless special additional memory interfacing
logic is added to the microprocessor system.

Only one 3852 DMI device will normally be present in an F8
microprocessor system.

The 3854 DMA device may be attached to the 3852 DMI de-
vice enabling data to be transferred between memory devices
and any external device, bypassing the 3850 CPU.

2.6.1 3852 Timing
Timing signats created by the 3850 CPU, and illustrated in
Figure 2-7, control operation sequences in the 3852 DML

2.6.2 3852 Registers

The 3852 DMI device has the same address registers as the
3851 PSU; however, the 3852 DMI has two Data Counter
ragisters. Thus the 3852 has one Program Counter (PCO)}, one
Stack Pointer {PC1} and two Data Counters {DCO and DC1),

There are two differences between the way in which 3852
registers and 3851 registers are used.

The 3852 has no chip select mask. This is because there will
only be one 3852 device in 2 microprocessor system, and it
passas the entire PCO address io attached RAM devices; the
attached RAM devices interpret part of the PCO address as
chip select lines. -

Data Counter DC1 is a temporary storage buffer for Data
Counter DCO. An instruction switches the DCO and DC1 reg-
isters’ contents; since 3851 PSU have no DC1 register, this
switch instruction has no effect on 3851 PSU. Thus it is pos-
sible for the 3852 DMI Data Counter {DCO) to have contents
which differ from 38561 PSU. Recall that the Data Counters
are logically connected to the H and Q scratchpad registers
within the 38560 CPU, so that Data Counters’ contents may
be transferred to the H or Q registers. The fact that the 3851
DCO register and the 3852 DCO register may not heold the
same addresses may present a problem, since the contents
of a Data Counter is transferred to the H or Q registers from
any device with a device select code corresponding to the
current DCO contants.

Simultaneocus use of 38561 PSU and 3852 DMl devices is
discussed in detail in Section 7.2.

tpre——p DATA PATHS
= CONTROL PATHS

MEMORY

DMA
CHANNEL
INTERAUPT
LOGIC
|-
Ll 1.0 PORTS

et

1,3 PORTS

MICROPROCESSORA
SYSTEM
e ey
QUTSIDE
WORLD

Fig. 2-10. Logical Functions of the 3862 DMI Davice

2.6.3 3852 Direct Memory Access and Memory
Refresh

The 3852 DMI device has two addressable ports which are
used to enable direct transfer of data between memary
devices and external devices. This transfer is referred to as
Direct Memory Access (DMA), and requires the presence of
the 38564 DMA device. For a discussion of DMA see Sections
2.2.4, 28 and 8.4,

The two addressable 3852 ports use hexadecimal addresses
HOC" and H'OD'. Port H’'OC’ requires a control byte to be
loaded for interpretation as follows:

Bit No.
0 1 = DMA not allowed 0 = DMA allowed
1 1 = Refresh memory 0 = No memory refresh
2 1 = Refresh every fourth write cycle
0 = Refresh every eighth write cycle

Another varsion of the 3852 DMI device, referred to as the
SL 31116 device, uses port addresses H'EC' and H'ED’ instead
of HOC® and H'OD'. This allows 3852 DMI and 3853 SMI
devices to be used in the same microprocessor system.

2.7 THE 3853 STATIC MEMORY

INTERFACE
Figure 2-11 illustrates the logical functions implemented on
the 3853 SMI device.

The 3853 SMI device is similar to the 3852 DMI device, de-
scribed in Section 2.5. There are four important differences,
which are described below.

1) The 3853 SMI device interfaces static memory (such
as the Fairchild 2102 RAM) to a 3850 CPU.

2) The 3853 SMI does not have a DMA interface
capability.

3) The 3853 SMI has local timer and interrupt control, as -
described for the 3851 PSU in Section 2.4.4. How- |
ever, the 3853 local timer port address is H'OF* and 4
the interrupt control port address is H'OE". 4

4) The 3853 SMI has two additional ports, addressed
H'0C’ and H'0OD’, which are programmable interrupt -
vactor registers. The importance and use of these |
registers is discussed in Section 8.2 '

7

-

——a——p DATA PATHS
- — = — - CONTROL PATHS

MEMORY

L

DMA
CHANNEL

110 PORTS

;O PGRTS

MICROPROCESSOR
SYSTEM
e
QUTSIDE
WORLD

Fig. 2-11. Logical Functions of the 3853 SMI Device

Since the 3853, like the 3852, has two Data Counter regis-
ters, there are similar programming consequences, as de-
scribed in Section 7.2,

2.8 THE 3854 DIRECT MEMORY ACCESS

Figure 2-12 iliustrates the logical functions implemented on
the 3854 DMA device.

The 3854 DMA device, in conjunction with the 3852 DMI
device, sets up a data channel between a peripheral device
nd the memory associated with the DMI. DMA data trans-
fers occur during the secand part of each instruction cycle,
therefore program execution speed is in no way degraded
by paraliel DMA. data transfers. The concept of DMA data
transfers is described in Section 2.2.4.

There may be up to four 3854 DMA devices in one micro-
processor system.

Any external device may be attached to a 3854 DMA device.
Also, two microprocessor systems may communicate with
each other via a DMA device. For a description of how various
DMA operations are programmed, see Section 8.4.

v —

2-11

2.8.1 3854 Registers

The 3854 has three internal registers, addressed as four
separate IO ports. Addresses of the four /0 ports associ-
ated with the three 3854 registers are given in Table 2-2. The
three registers are described next.

FUNCTION OF | FIRST | SECOND | THIRD FOURTH
170 PORT 3854 3854 3854 3854

Address, L.0O.
Byte (BUFA) FO F4 Fg8 FC
Address, H.0O.
Byte (BUFB) F1 F5 Fo FD
Count, L.O.
Byte (BUFC) F2 F6 FA FE
Count, H.O.
Four bits, and F3 F7 FB FF
Control* (BUFD)

*The low arder faur bits of this port ¢constitute the high order four bits of the
byte count. The high order four bits of this port constitute the function code,

Table 2-2. Hexadecimal Addresses of Four I/Q Ports Used as
Registers by Four 3854 DMA Registers.

|

t—smr——- DATA PATHS
REAL
g — == — = CONTAOL PATHS TIME

cLocK

MEMORY

I
|
!
“x t

INTERRUPT
LOGIC

—

MEMORY
INTERFACE
LOGIC

;0 PORTS

1,0 PORTS

MICROPROCESSOR

SYSTEM

e St E—

OUTSIDE
WORLD

Fig. 2-12. Logical Functions of the 3854 DMA Device

BUFA, BUFB, BUFC and BUFD are buffer names used in
Section B.4.2, which describe DMA programming.

ADDRESS REGISTER

This is a 16-bit register which holds the address of the next
memaory byte to be accessed for a DMA data transfer,

Before a DMA operation is initiated, the beginning memary
address for the data block which is to be transferred must be
loaded (using appropriate F8 instructions} into the two ports
set aside as the address register. As each data byte is trans-
ferred {input or output), the contents of the address register
are automatically incremented.

BYTE COUNT REGISTER

This is a 12-bit register which acts as a counter, allowing
blocks of up to 4096 data bytes io be_ transferred during a
DMA operation. As described in Section 2.8.2, it is pos-
sible to execute DMA transfers without using the Byte Count
register.

If the Byte Count register is in use, it is decrementad as each
byte of data is transferred, until it is decremeanted to O; data
transfer then stops.

CONTROL REGISTER
This is a 4-bit register which controls DMA operations as
described next.

2.8.2 DMA Control Codes

The Control Register has four hits which control DMA
operations as follows:

Bit 7 - ENABLE

This bit must be set to 1 in order to initiate a DMA operation;
it is automatically reset to O when the DMA operation has
run to completion.

Bit 6 - DIRECTION

If this bit is O, data is transferred from main memory to the
external device. If this bit is 1, data is transferred from the
external device to main memory.

Bit 5 - INDEF

If this bit is O, the Byte Count register controls the DMA trans-
fer, which halts when the Byte Count register is decremented

to 0. If this bit is 1, the Byte Count register is ignored and
DMA transfer continues until the ENABLE bit is reset to 0

under program control,

Bit 4 - HIGHSPEED

If this bit is 0, the external device controls the rate at which
data is transferred. If this bit is set to 1, a data byte will be
transferred during every available DMA time slot; the external
device must be capable of transmitting or receiving the data
at the execution cycle speed of the F8 system.

i
1
3
1

F8 PROGRAMS

Individual instructions of the F8 assembly language instruc-
tion set exercise all of the capabilities of every device de-
scribed in Section 2. Before studying individual instructions,
however, it is necessary to understand what a program is,
how a program is written, and how the written program
becomes a PSU that drives the microprocessor system.

3.1 FLOWCHARTING

An application which is to ba implemented using a micro-
processor is specifiad using a flowchart; this differs from hard-
ware logic diagrams only in the symbols used and the
operations specified at each mode. The following four symbols
will usually be sufficient in any microprocessor program
flowchart:

1} Beginning and End
A program may have one or more initiation or
termination points. identify sach with the symbols:

GaD o« (G

2} Internal operations
Enclose words in a rectangular box to identify each
step of a program. Here is an example:

Increment byte count

3) 170 operations
Use a parallelogram to identify 17O operations. Here
is an example:

Input next

data byte

from 170

4) Decisions
Use a diamond to identify decisions. Here is an
example:

Figure 3-1 flowcharts a very simple program that moves data
from one buffer in RAM to another buffer in RAM.

Figure 3-2 flowcharts a program that performs a multibyte
addition. Observe that arrows identify the possible logic
flow paths.

3.2 ASSIGNING MEMORY

Having flowcharted an entire application, the naxt step is to
identify and name every buffer and variable to be referenced
by the program, Names must conform to the rules of symboi
syntax, described in Section 4.2.3., and will be used by the
program to specify individual buffers and variables.

Before starting to write a program, assign space in scratch-
pad and in ROM or RAM memory for each buffer and every
variable. These assignments will probably change before the
program is finalized; nevertheless, it is important to have a
clearly mapped data area at all times. Note alsc that the same
scratchpad or RAM memory bytes may be used by different
variables within one program, providing the different uses
never overlap.

IDENTIFY START
OF SOURCE
BUFFER

IDENTIFY START
OF DESTINATION
BUFFER

LOAD BUFFER LENGTH
IN A SCRATCHPAD
REGISTER

——]

LOAD NEXT
SOURCE BYTE

STORE IN NEXT
DESTINATION
BUFFER BYTE

l

DECREMENT
BUFFER LENGTH
COUNTER

Fig. 3-1. Flowchart for a Program to Move Data from One
RAM Buffer to Anothar

Recall that scratchpad registers are addrassed by the ISAR
register in the 3860 CPU, and are numbered from O to 63.
ROM and RAM are addressed by the DCO register when ac-
cassing data. {Every 3851, 3852 and 3853 device has its own
DCO register.) ROM and RAM bytes have addresses numbered
from O to 65535.

With regard to addresses, note the following:

1) The first 64 bytes of ROM/RAM may have addresses
that are the same as the Scratchpad Register
addresses. No confusion is possible since the scratch-
pad is addressed via ISAR while ROM and RAM are
addressed via DCO.

2) ROM and RAM byte addresses must not overlap.

3} Memory addresses must be contiguous within one de-
vice, but need not be contiguous from device to daevice.
For example, three 3851 PSU may decode addresses
from O to 1023, from 2048 to 3071, and from 3072
to 40956, Addresses 1024 to 2047 may be unused.
{Recall that each 3851 PSU contains 1024 bytes of
memory.}

(START '

STORE BUFFER LENGTH
IN SCRATCHPAD
BYTE D

LOAD FIRST BUFFER
STARTING ADDRESS
INTO DC1

LOAD SECOND BUFFER
STARTING ADDRESS
INTO DCO

CLEAR CARRY
STATUS

LOAD FIRST {OR NEXT}
BUFFER 2 BYTE INTQ
ACCUMULATOR

ADD FIRST [OR NEXT}
BUFFER 1 BYTE
PLUS LINK

QUTPUT 5UM
V1A PORT O

DECREMENT LENGTH
COUNTER

NO

YES

Fig. 3-2. Flowchart for Program to Add Two Multibyte

Numbers and Qutput the Result

3.3 SOURCE AND OBJECT PROGRAMS

What eventually makes an F8 microprocessor system perform
its assigned tasks is a sequence of binary digits, stored in
memory and called an object program.

Since the FB microprocessor accesses memory in 8-bit {or
1-byte} units, the binary digits of an object program are, by
convention, collected into 8-bit units which are represented
on paper as two hexadecimal digits (each hexadecimal digit
is aquivalent to four binary digits).

Upon examining the contents of any individual byte of mem-
ory, it would be impossible to determine what the eight binary

3-2

digits contained by the memory byte represented. A memory
byte could hold any of the fotlowing types of information:

1)} An instruction code which the 3850 CPU is supposed
to interpret as an instruction.

2) Binary data which may be unsigned {representing
numbers between O and 255} or signed (representing
numbers between =128 and +127).

3) Data, as in 2) above, which provide specific informa-
tion needed by an instruction code as in 1) above.

4) Data which are to be interpreted as representing a
character that may be displayed or printed. Character
codes are given in Appendix B.

Mow, then, will an F8 system pick its way through the various
types of data which may be found stored in memeory?

The program counter register (PCO) which is included in every
3851, 3862 or 3853 device, will at all times contain the ad-
dress of the next memory byte whose content is to be inter-
preted by the 3850 CPU as an instruction code. When an F8
system is first powsered up, the program counter is initialized
at zero. Therefore, the contents of the memory byte with ad-
dress O will be interpreted as the first instruction code to be
executed. PCO alsc addresses data bytes of type 3.

Whenever the content of a memory byte is to be interpreted
as data of type 2 or 4, the address of the memory byte is con-
tained in the data counter registers {DCO}, which are also
present on every 3851, 3852 or 3853 device.

It is not easy to immediately understand that the 3850 CPU
is able to pick its way through object program numeric codes,
as stored in memory, by suitably manipulating the program
counter and data counter register contents; but fortunately,
such understanding is not necessary in order to write F8 pro-
grams. In fact, even though microprocessor programs could
be created directly as a sequence of hexadecimal digits, the
potential for making errors when writing such programs is so
overwhelming, that were an alternative method not available,
the computer industry would never have gotten off the
ground. The alternative is to write source programs.

A source program is a program written in a programming
language. In the case of the F8, this manual describes what
is called an assembly language. A programming language
represents data and instruction sequences in a manner which
is meaningless to a microprocessor but easily read and
understood by & human.

Lock at Figure 3-3. Upon first inspection, the part of the figure
identified as a source program will not make much sense; the
purpose of this manual is to explain how such source pro-
grams are written. Nevertheless, it is immediately evident
that the source program is potentially much easier fo read
and understand than the equivalent object program.

The process of converting a source program to an objact pro-
gram is automatic and is handled by an assembler which is,
itself, a computer program. The assembler interprets a source
program, character-by-character, then generates an equiv-
alent object program in a form that can be loaded into an F8
microprocessor system memory and executed.

BUFA EQU H'OBOO" SET THE VALUE OF SYMBOL BUFA
BUFB EQU H'08A0D" SET THE VALUE OF SYMBOL BUFB
ORG HO100°

0100 2A ONE coi BUFA SET DCO TO BUFA STARTING ADDRESS
0101 08
0102 00
0103 2C TWO XbC STORE IN DCH
0104 2A THREE DCl BUFB SET DCO TO BUFB STARTING ADDRESS
0105 OB
0106 AO
o7 20 FOUR LI H'80 LOAD BUFFER LENGTH INTO ACCUMULATOR
0108 80
0109 b1 FIVE LR 1.A SAVE BUFFER LENGTH IN SCRATCHPAD BYTE 1
Q10A 16 LOOP LM LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY DCO
0B 2C SIX XDC EXCHANGE DCO AND DC1
010C 17 SEVEN ST STORE ACCUMULATOR IN MEMQORY BYTE ADDRESSED BY DCO
0toD 2C EIGHT XDC EXCHANGE DCOQ AND DC1
0TOE 31 NINE DS DECREMENT SCRATCHPAD BYTE 1
010F 94 BNZ LOOP IF SCRATCHPAD BYTE 1 IS NOT ZERO, RETURN TG LOGF
0110 F9

N

-

——
A SOURCE PROGRAM

l The Equivalent Object Program. represented as hexadecimal numbers,
Hexadecimal address of memory byte in which object program byte is to be stored.

Fig. 3-3. Source and Object Programs

After the assembler has created the object program equiv-
alent of a source program, it will print its results, outputing
a program listing. The program listing provides information
used to detect errors in a source program,

The rest of this manual! explains how source programs are
written as follows:

Every line of a source program constitutes one instruction.
In Section 4, the various parts of an instruction are defined.

Section & and 6 define two classes of instructions used by
the F8 assembly language. The consequences of every exe-
cutable instruction’s execution are defined.

Section 7 describaes how individual instructions are combined
in order to create a program. Therefore, the source program
in Figure 3-3 will not be reaningful until you have completed
reading Section 7.

Section 8 explains how programs should be written to access
the various input and output features of the F8 microprocessor
system.

In summary, the process of writing an F8 program follows
these steps:

N

3-3

1} Using pencil and paper, write a source program.
2} Enter the source program, as text, into the computer
system being used to develop F8 object programs.
3) Assemble the source program entered in Step 2, and
thus create an ohject program. This step merely in-
volves executing & program called the Assembler,
identifying the source program and assigning a name
to the object program.
If the source program contains illegal steps, they will
be identified in Step 3. Treating the source program
as text, edit out the errors, then return to Step 3. If
there are no errors indicated at the end of Step 3, go
on to Step 5.
Using appropriate Fairchild provided debugging aids,
run the program created in Step 4 in order to find logic
errars. If errors are found, correct them in the source
program and return to Step 3. When there are no
errars, the program is complete.

4

i

5

—

This manual provides information nesded to perform Step 1.
The F8 Timeshare Operating Systems Manual provides
information needed for Steps 2 through 5.

During Step 3, the program listing is printed out on a line
printer or time shara tarminal. The program listing shows the
source and equivalent object program instructions, as well as
additional, optional material that may be specified using as-
sembler directives described tn Chapter 5. Use the program
listing to visually check a program; mark on the program
listing all changes that must be made to the source program.

4l

ASSEMBLY LANGUAGE SYNTAX

A very specific set of rules apply to the way in which an
assembly language source program is written.

An assembly language program consists of a number of in-
structions, aach of which occupies one line of text. There are
four parts (or fields) to an instruction; one or more fields may
contain non-blank information. Definite rules cover the char-
acters that may be used in an instruction and how each char-
acter will be interpreted, depending on in which field the
character appears.

The rules covering tha way in which assembly language source
programs are written are referred to collectively as the syn-
tax of the assembly language. Assembly language syntax will
be described with reference to the data moving program
flowcharted in Figure 3-1 and illustrated in Figure 3-3.

4.1 INSTRUCTION TYPES
There are three types of source program statements:
comments, exacutable instructions and assembler directives.

4.1.1 Comments

Comment instructions are used to insert remarks in the pro-
gram in order to identify the program, separate program sec-
tions or make the source program easier to follow. A comment
instruction does not have any computer related function, nor
does it generate any object code; therefors, there is no re-
striction on its format or characters. An asterisk (*} charac-
ter in column 1 designates the line of text as a comment
instruction. Following the asterisk, there can be up to 71 char-
acters of comment. Figure 4-1 illustrates comment lines in a
source program.

4.1.2 Executable Instructions

Executable instructions are the steps that implement the pro-
cedure being programmed. For every executable instruction,
the assembler generates one, two or three bytes of object
code.

4.1.3 Assembler Directives

Assembler directives provide the assembler with additicnal
information about the program. They are used to control the
assembly process and in some cases cause data, which is
included in the objact code, to be generatad.

4.2 INSTRUCTION FIELDS

Executable instructions and assembler directives have the
following four fields:

1. Label field

2. Mnemonic field
3. Operand field
4. Comment field

Executable instructions and assembler directives must be
formatted in a specific manner in order to be properly inter-
preted by the F8 Assembler. This means that each part of a
source program instruction must be placed in its designated
position or “field".

4.2.1 Label Field

The label field provides a means for assigning a name to
a specific instruction. Any valid symbol (see Section 4.3.2)
may be used in the label field. The label field begins in column
1 and may have any length; however, only the firstfour char-

BUFA EQU H’0800°
BUFE EQU H'OBAQO
ORG H'0100°

0100 2A ONE DCi BUFA
2101 08
0102 00
0103 2¢ T™WO XpC
0104 2A THREE DCI BUFE
0105 08
0106 AO
0107 20 FOUR L H'BO’
0108 80
0109 51 FIVE LR 1.A
010A 16 LOOP M
010B 2C SIX XDC
010C 17 SEVEN ST
010D 2C EIGHT XDC
010E 31 NINE DS 1
010F 94 BNZ2 LOOP
0110 FA

END

SET THE VALUE OF SYMBOL BUFA
SET THE VALUE OF SYMBOL BUFB

SET DCO TO BUFA STARTING ADDRESS

STORE IN DC1
SET DCO TO BUFBE STARTING ADDRESS

LOAD BUFFER LENGTH INTO ACCUMULATOR

SAVE BUFFER LENGTH IN SCRATCHPAD BYTE 1

LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY DCO
EXCHANGE DCO AND DC1

STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCO
EXCHANGE DCO AND DC1

DECREMENT SCRATCHPAD BYTE 1

IF SCRATCHPAD BYTE 1 1S NOT ZERO, RETURN TO LOOP

Fig. 4-1. Four Commaent Lines (Shaded) in a Source Program

acters are recognized by the assembler. The label field is
terminated by a blank character. Figure 4-2 identifies label
fields.

Label fields are frequently optional. With reference to Figure
4-2, notice that only three instruction labels, BUFA, BUFB
and LOOP are necessary; they are the only labels referenced
by other instructions.

4.2.2 Mnemonic Field

The mnemonic field contains the Operation Code {op code),
which identifies the operation to be performed. There are two
classes of operations accepted by the Assembler:

1. Assembler directives {Section 5)
2. CPU instructions {Section 6)

The mnemonic field may begin in any column other than col-
umn 1, and is terminated by a blank space. Figure 4-3
identifies mnemonic fields in a program.

In Figure 4-3, assembler directives are identified; notice that
these assembler directives generate no cbject code.

4.2.3 Operand Field

The operand field consists of additional information {e.g..
parameters, addresses) required by the Assembler to inter-
pret the mnemonic field completely. The operand field may
contain a symbol or expression ({see Sections 4.3.2 and
4.3.4). The operand field must be separated frem the mne-
monic field by at least one blank; also, the operand field must
be terminated by a blank. Figure 4-4 identifies the operand
fields of a program. Notice that many instructions require no
information in the operand field.

tnstruction FOUR in Figure 4-4 ilustrates the function served
by operand fields. When executed, this instruction causes the
byte value specified in the operand field to be loaded into the
3850 CPU accumulator register. In response to the source
program instruction, the assembler generates an object pro-
gram byte of H'20’ representing the mnemonic "LI", the nu-
meric value in the operand field is placed, by the assembler,
in the next object program byte.

4.2.4 Comment Field

The comment field is optional and provides additional in-
formation that makes the source program easier to read. This

H'0B0Y"

SET THE VALUE OF SYMBOL BUFA
SET THE VALUE OF SYMBOL BUFB

0100 SET DCO TO BUFA STARTING ADDRESS

o1mm

0102

0103 STORE IN DCY

0104 SET DCC TO BUFB STARTING ADDRESS

0105

0106

o7 LOAD BUFFER LENGTH INTO ACCUMULATOR

o108

0109 SAVE BUFFER LENGTH IN SCRATCHFAD BYTE 1

O10A LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY DCO
o108 EXCHANGE DCO AND DCY

a1oc STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCO
10D EXCHANGE DCO AND DCY

Q10€ DECREMENT SCRATCHPAD BYTE 1

O10F IF SCRATCHPAD BYTE 1 1S NOT ZERQ, RETURN TQ LODP
oo

Fig. 4-2.

Label Fields {(Shaded) in a Source Program

Assembler
Directives

i)
SET DCO TO BUFA STARTING ADDRESS

100

o101 08

0102 00

0103 2C TWO STORE IN DC1

0104 24 THREE BUFB SET DCO TO BUFB STARTING ADDRESS

0105 D8

0106 AQ

0107 20 FOUR H'80° LOAD BUFFER LENGTH INTO ACCUMULATOR

o108 80

0102 51 FVE 1A SAVE BUFFER LENGTH IN SCRATCHPAD BYTE 1

010A 16 LOOP LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY DCO
010B 2C SIX EXCHANGE DCD AND DCY

010C 17 SEVEN STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCO
010D 2C EIGHT EXCHANGE DCO AND DC1

010E 1 DECREMENT SCRATCHPAD BYTE 1

010F LOOP IF SCRATCHPAD BYTE 115 NOT ZERC, RETURN TO LOOP

o110
Assembler
Directive

Qbject Program

Fig. 4-3. Mnemaonic Field (Vertical Shaded) in a Source Program

4.2

field is ignored by the Assembler and generates ne object
code. The comment field must be separated from the operand
fieid {or the mnemonic field if there is no aperand field) by
at least one blank; it continues to the end of the text line.

Figure 4-5 identifies the comment fields of a program.

4.2.5 Aligning Fields

Figure 4-6 illustrates the source program of Figures 4-1 to
4-5, with a single space code separating each field of every
instruction.

Cleariy the program in Figure 4-6 is hard to read. For clarity
it is recommended that all fields be aligned within character
positions of every line; here is one possibility:

Label field:
Mnemonic field:
Operand field:
Comment fiefd:

Characters 110 6
Charcters 7 to 11
Characters 12 toc 19
Characters 20 to 72

BUFA EQU H'OB00° SET THE VALUE OF SYMBOL BLIFA
BUFE EQU H'QQAQ" SET THE WALUE OF SYMBOL BUFR
ORG H'G100"
ONE DC1 BUFA SET DCO TO BUFA STARTING ADDAESS
TWO XDC STORE IN DCH
THREE DCI BUFB SET DCO TO BUFB STARTING ADDRESS
FOUR LI H'BY" LOAD BUFFER LENGTH INTO ACCUMULATOR
FIVE LR 1.A SAVE BUFFER LENGTH IN SCRATCHPAD BYTE t
LOOF LM LOAD CONTENTS OF MEMORAY BYTE ADDRESSED BY DCO
SfX XDC EXCHANGE DCO AND DCH
SEVEN ST STCRE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCO
EIGHT XDC EXCHANGE DCO AND DC1
NINE D5 1 DECREMENT SCRATCHPAD BYTE 1
BNZ LOOFP IF SCRATCHPAD BYTE 1 1S NOT ZERQ, RETURN TO LOOP
END

Fig. 4-6. A Source Program with Unaligned Fields

BUFA EQU

BUFB EQU

ORG

0100 2A ONE DCl
a1 08
o102 00

103 2C TWO XpcC
104 2A THREE DCI

0107 20 FOUR L

0108 B1 FIVE LR
010aA 16 LOOP LM
010B 2C SIX XpC
010C 17 SEVEN ST
0100 2C EIGHT XDC
O10E 31 NINE DS
o010 94 BNZ

END

SET THE VALUE OF SYMBOL BUFA
: SET THE VALUE OF SYMBOL BUFB

SET DCO TO BUFA STARTING ADDRESS

STORE IN DC1
SET DCO TO BUFB STARTING ADDRESS

LOAD BUFFER LENGTH INTO ACCUMULATOR

SAVE BUFFER LENGTH IN SCRATCHPAD BYTE 1

LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY DCO
EXCHANGE DCO AND DC1

STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCD
EXCHANGE DCO AND DC1

DECREMENT SCRATCHPAD BYTE 1

IF SCRATCHPAD BYTE 1 1S NOT ZERO, RETURN TO LOOP

fFig. 4-4. Operand Fields [Shaded) in a Source Program

BUFA EQU H'080Q"
BUFE EQU M'0BAQY
ORG H0100
0100 2A ONE DCl BUFA
o101 08
0102 00
0102 20 TWD XDC
0104 24 THREE DG BUFB
0105 0B
01068 AD
007 20 FOUR LU H'80"
o108 80
0109 51 FIVE LR 1.A

0104 16 LOOP LM
010B 2C SIX XDe
010C 17 SEVEN ST
010D 2C EIGHT XDC

Q106 31 NINE Ds 1
010F 94 BNZ LOOP
Q110 FA

END

Fig. 4-8. Comment Fields (Shaded) in a Source Program

4.3 LANGUAGE COMPONENTS

4.3.1 Valid Characters

The F8 Assembler accepts all characters available on an input
terminal as valid characters. Alphabetic {A-Z}, numeric {0-9),
and special (all other terminal characters) characters are valid
when correctly used; in other words, there is no character
which will always be invalid.

Some characters have been assigned special meaning: the
use of these special charactersis tharefarerestricted, as
described in the following sub-sections, and summarized in
Table 4-1.

Restricted
Charactar Function Example
D Specify decimal constants D'1234'
H Specify hexadecimal constants | H" 23A°
B Specify binary constants B'10011101°
0 Specify octal constants 0237147
c Specify character constants CVALID’
T Specify timer counts T'123°
* Current memory location *+3
* Multiplication sign {(VAL*2)
e Exponentiation sign (VAL**2)
+ Addition sign {(VAL+2)
- Subtraction sign {VAL-2)
/ Division sign (VAL/2}
{ Beginning of an expression {(VAL+2)
) End of an expression (VAL+2)
Saparate operands A
Table 4-1. A Summary of Restricted Characters

Restricted characters may be used in any way that does not
directly conflict with the restricted use.

4.3.2 Constants

Constants represent quantities or data that do not vary in
valua during the execution of a program. The syntax for
constants’ representation is described below.

DECIMAL

A decimal number consists of a string of from one to five nu-
meric characters. The number may be preceded by a minus
~_* sign but no blanks are allowed within the number. The
value of a decimal digit must fall in the range +32767 to
-32768. Optionally, decimal numbers may be enclosed
between single quotes, preceded by a D character.

Examples:

Valid Invalid Reason invalid

12 123456 Too many digits

-123 123~ {nvalid character

12345 12.3 Invalid character

-5432 1283 Invalid character

234566 65432 Above +32767

D12’ 12'D D does not precede
number in quotes

D’'23456" 0’'65432" Above +32767

4-4

HEXADECIMAL

A hexadecimal number consists of a string of from one 10
four numeric characters and/or alphabetic characters {A to
F inclusive) enclosed in single quotes and preceded by an H.
No blanks are allowed within the number or between the H
and the number. Hexadecimal numbers in the range HQ' to
H'EFFE’ are valid. Signed hexadecimal numbers are invalid.

Examples:

Valid Invalid Reason invalid
H12' "ABCD’ No preceding H
H'ABCD’ H'-12' Invalid character (-}
H1AFQ’ H'12. A3 Invalid character {.}
BINARY

A binary number consists of a string of from 1 to 16 ones of
zeroes, enclosed within a pair of quotes and preceded by a B.
No blanks are allowed between the apostrophe symbols, or
between the B and the number. If there are less than 18
binary digits, leading O digits are assumed.

Examples:

Valid Invalid Reason invalid

B'101107’ B1011101 No quotes

BOO10 B*10110111011100101° Too many digits
B10021" Invalid digit {2}

OCTAL

An octal number consists of a string of from one to six nu-
meric digits, excluding 8 or 9, enclosed between single guotes
and preceded by an O. Octal numbers in the range 0'0" 1w
0177777 are valid. Signed numbers are invalid.

Examples:

Valid Invalid Reason invalid
017243 017243 No quotes

0’2462’ 2462 No preceding O
Q177272 0277272 Value exceeds maximum
023714 0’23914’ Invalid character {9}
CHARACTERS

Any characters {other than the single quote character) may
be enclosed in single quotes and preceded by a C, in which
case the characters will be interpreted as ASCIl characters
{see Appendix B).

Examples:

Valid Invatid Reason invalid
C'VALID’ ALID' No preceding C
C'12345' C12345’ No initial single quote
C’'NAME’ C"NAME" Double quotes

TIMER COUNTS

As described in Section 2, the 3851 PSU and the 3853
Memory Interface device each have a timer which may be
loaded under program control. Depending on the value lpaded
into the timer, variable delays may be programmed, at the
end of which a timer interrupt is transmitted to the 3850 CPU.

A

Timer counts may be entered, as decimal numbers between
0 and 255, enclosed in single quotes and preceded by a T.
The assembler converts the timer count to the exact binary
code which {based on the timer logic} will generate the re-
quired time delay. Appendix C provides the exact codes that
cerrespond to each timer count entered using T'nn’ format.

Recall that the exact time delay is given by the equation:

Delay = (timer counts) * 31 * Clock period

Examptes:

Valid Invalid Reason invalid
T'25° T25 No single quotes
127 T124° Invalid character {A)
254" T'264’ Count too high
4.3.3 Symbols

A symbol is a character string of from one to four characters,
the first of which must be alphabetic {A-Z). A symbol may
have any number of characters; however, only the first four
characters are interpreted by the assembler. A symbal can-
not have the exact appearance of a number, as specified in
Section 4.3.2.

Since a blank space acts as a field delimiter, it cannot be
present as a character within a symbol.

Examples:
Valid {nvalid Reason invalid
ABCD ABBCD A blank present. AB is the
: assumed symbol
AB12 12AB A numeric first character
D12 D12’ Would be interpreted as
decimal 12

SYMBOLA SYMBOLB Both symbols are SYMB

Figure 4-7 illustrates a number of symbols in a source pro-
gram. Observe that symbols may appear in the label field or
the operand field of an instruction.

When a symbeol appears in the label field of an instruction,
it is either assigned a value by that instruction (EQU) or it is
assigned a value equal to the location of that instruction,
depending on the nature of the instruction. Secticns 5.5
and 5.7 describe how this is done.

When a symbol appears in the operand field of an instruction,
the assembler substitutes the assigned value for the symbol.
For example, instruction THREE in Figure 4-7 causes the value
associated with symbol BUFB to be loaded into the DCO reg-
isters of all memory and memory interface devices. Instruc-
tion THREE therefore generates the following object code:

THREE | bci | | surs |

08

AQ

4.3.4 Expressions

Expressions may appear in the operand field of an instruction,
and are evaluated by the assembler to generate a constant
which is used in the object program.

0104 2A THREE DCI
0105
0106
0107
0108
0109
010A
o108
010¢
0100
Q10E
Q10F
0110

END

QObject Program

EQU H'080C" SET THE VALUE OF SYMBOL BUFA
EQU H'0BAC' SET THE VALUE OF SYMBOL BUFB
' ORG H'0100"
0100 i DCl SET DCO TO BUFA STARTING ADDRESS
0101 08
0102 00
0103 2¢ TWO XDC STORE IN DC1

== SET DCO TO BUFB STARTING ADDRESS

GRE L H'80 LOAD BUFFER LENGTH INTQ ACCUMULATOR

: LR 1.A SAVE BUFFER LENGTH !N SCRATCHPAD BYTE 1

LM LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY DCO

XbC EXCHANGE DCO AND DC1

ST STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCO
XoC EXCHANGE DCO AND DC1

Ds 1 DECREMENT SCRATCHPAD BYTE 1

gﬁf‘; IF SCRATCHPAD BYTE 1 1S NOT ZERC, RETURN TQ LOOP

Hexadecimal memory address in which object code is stored.

Fig. 4-7. Symbols in a Source Program

4.5

Unlike higher level languages, expressions do not represent
equations to be resolved at execution time. By the time a
program is executed, every expression in the source program
will have bean converted (by the assembler) to a constant in
the object program.

An expression can have three types of numeric value, linked
by six types of aigebraic symbol.

These are the three types of numeric value:

1) Any symbol, as defined in Section 4.3.3.
2) Any constant numeric value, as defined in Section
4.3.2,

3) An asterisk {(*), which will be interpreted as having the
value of the memory address into which the first ob-
ject program byte for this instruction will be stored.

These are the six algebraic symbols that are recognized:

1) + for add
2} - for subtract

4-5

3) * far multiply

4) / for divide

B) ** for exponentiate

6) (and } to enclese expression and subexpressions,
which are to be evaluated as a constant.

Expressions and subexpressions must be enclosed in brackets.
An exception is the simple {and most frequently used
expression:

*tnumeric constant
Subexpressions may be nested ten deep.

LIse of complex expressions is pointless, since it is almost as
simple to evaluate the expression and use the evaluated re-
sult in the object program. The cne time when expressions
are useful is when calculating instruction addresses. Refer-
ring to Figure 4-7. the following are substitutes for LOOP in
the operand field of instruction TEN:

{equals H'O10F’ - b)
(equals H'0107' + 3)

*-5
{(FOUR+3)

ASSEMBLER DIRECTIVES

Assembler directives are instructions to the assembler; as
such, they generate no object code. Assembler directives
provide the assembler with the following three types of
information:

1} Values of symbols
2} How memory is to be mapped
3) Assembly listings print options

Assembler directives are described in alphabetic order on the
following pages. A summary of the assembler directives
which are necessary, versus those which are optional, is given
in Section 5.11; hints on good programming practice are
also provided.

5.1 BASE - SELECT LISTING NUMERIC BASE

This is an optional directive which specifies the number sys-
tem in which object program codes will be printed on the
assembler printout. The following three options are provided:

Label Mnemonic Operand Comment
BASE HEX Select hexadecimai output
BASE OCT Selact octal output
BASE DEC Select decimal output

If no base is specified, decimal output will be selected by de-
fault. If a base is specified, one BASE instruction should ap-
pear at the beginning of the program, as illustrated in
Figure 5-1.

Since hexadecimal notation is the standard for the F8 micro-
processor, it is strongly recommended that programmers use
this numeric option.

6.2 DC - DEFINE CONSTANT

This directive causes the assembler to generate a one or two
byte constant. The DC directive is an exception in that
it causes one or two bytes of object code to be generated—
identical to the ane or two byte constant specified,

The OC directive will usually have a label, which becomes the
symbol via which the constant is referenced. The general
format of the DC directive s

Label Mnemonic Qperand
LABEL DC VALUE

LABEL is any valid symbaol. The label is optional.
VALUE is any valid numeric value as described in Section
4.3.2.

For examples of DC directive use see Section 7.2.1. See
also Section 5.5.1 for a discussion of when DC directives
are used and when EQU directives are used.

5.3 EJECT - EJECT CURRENT LISTING PAGE

This directive has no effect on the program being assembied.
It controls the line printer on which the assembler is printing
out an assembly listing.

When the assembler encounters EJECT in the mnemanic field
of an instruction, it immediately advances the line printer
paper to the top of the next page.

If the assembler is not printing out an assembly listing, it will
ignore the EJECT directive.

The format of the EJECT directive is:

Mnemaonic QOperand

EJECT

Label

|

SET DCO TO BUFB STARTING ADDRESS

LOAD BUFFER LENGTH INTO ACCUMULATOR

SAVE BUFFER LENGTH IN SCRATCHPAD BYTE 1

LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY DCO
EXCHANGE DCO AND DC1 .

STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCo
EXCHANGE DCO AND HC1

DECREMENT SCRATCHPAD BYTE 1

IF SCRATCHPAD BYTE 1 1S NOT ZERO, RETURN TO LOOP

0100

o101

0102

0103 2 TWO XDC STORE IN DC1

0104 2A THREE DCI BUFB

0106 08

0106 A0

0107 20 FOUR L H80"

0108 80

0103 51 FIVE LR 1.A

010A 16 LOOP LM

018 2C SIX XDC

010C 17 SEVEN ST

010D 2C EIGHT XbC

O10E 31 NINE DS 1

C10F 94 BNZ LOQP
; 0110 FA

END

Fig. 5-1. Assembler Directives {Shaded) in a Source Program

_A

b-1

5.4 END - END OF ASSEMBLY
An END directive must terminate every source program. Upon

encountering this directive, the assembler stops reading
source program instructions, and starts to perform various
post-assembly computations.

Figure 5-1 illustrates use of an END directive.

Note that an END directive cannot, and must not, have & label.

The format of the END directive is:

Label Mnemonic Operand
Must END
be blank

5.5 EQU - EQUATE A SYMBOL TO A NUMERIC
VALUE

Every symbal in a source program must be the label of an

assembly language instruction or a DC directive, or the sym-

bol must be assigned a value by an EQU directive. The general

format of an EQU directive is:

Label Mnemonic
LABEL EQLU

Operand
VALUE

LABEL is any valid symbol.
VALUE is any valid numeric value as described in Section
4272

Refer to Figure 5-1. The symbols BUFA and BUFB appear in
instructions ONE and THREE, and are assigned values by two
EQU directives. Therefore:

BUFA EQU

H'0800"

ONE DCI BUFA

is idemtical in its net effect to:

ONE DCI H'0B0O’

Why then are Equate directives used? In a real program, a
symbel (such as BUFA} is likely to appear many times. If the
value of the symbol changes, the progrram can be corrected
by modifying one Equate directive, then re-assembling the
pregram. If absolute values are used in instruction operands
{instead of symbols), every instruction that references the
absolute value must be changed in the source program if
the absolute value changes; the source program nust be

re-assembled.

For example, suppose there are 24 instructions in a source
program that reference the symbol BUFA. The Equate direc-
tive could be eliminated, in which case each of the 24 instruc-
tions would have H'0800" where it had BUFA. However, if
H'0800" had to be changed, instead of making the change in
one Equate directive, the change would have to be made in
each of the 24 instructions.

5.56.1 A Comparison of the EQU and DC Directives

A common error made by novice programmers is to misuse
the EQU and DC directives. The difference between the two
must be clearly understood.

With reference to Figure 5-1, consider the following erronesous

variation of the BUFA symbol’s use:

ORG H'2ZFAD’
BUFA DC H'0800"

ORG H'O100°
ONE DCI BUFA

The DC directive causes the two byte, hexadecimal value
H'0800" to be stored in two memory bytes, with addresses
H'2FAQ’ and H:2FA1". In instruction QNE, BUFA acquires the
value H'2FAQ’, not HO800".

Now consider how the DC directives might be correctly used
in the Figure 5-1 program. BUFB has been equatad to

H'O8AQ’, which is the starting memory addraess of the source 1

buffer. The source buffer contents could be specified, using
DC directives, as follows:

8UFA EQU H'0800"
ORG H'0100°

ONE DCI BUFA

WO XDC

THREE DCI BUFB
ORG H'08A0"

BUFB DC H’20A1"
DC H'143E’
bc H'5A62’

The symbol BUFB no longer needs te be equated to H'OBAY
since it appears as a label at address H'08A0’. The DC direc-
tives cause the data string H'20A1143E5A62" to be loaded
into memory starting at memory location H'OBAQ'.

NOTE- When a buffer’'s contents are specified by DC directives,
the buffer's data becomes part of the program, and
are loaded into memory when the program is loaded
into memaory.

5.6 MAXCPU - SPECIFY MAXIMUM CPU TIME

This directive is only meaningful when the source program is
being assembled on & large host computer {e.g., an IBM 360
or 370). On such large computers, programs exist to simu-
late the F8 microprocessor; therefore once the source program
has been assembled, the object program may be “run” using
the host computer simulator,

A potential problem lies in executing an object program
which, due to programming errors, may run for ever; 2 large
amount of costly host computer time may be expended before
the existence of the error is detected. The MAXCPU directive
specifies @ maximum number of seconds of host computer
execution time, after which program execution will be
terminated.

Figure 5-1 illustrates the use of the MAXCPU directive, speci-
fying a maximum of 50 seconds of host computer CPU time,
Note that the MAXCPU directive cannot, and must not, have
a labhel,

¢F 9

¢

F o

The format of the MAXCPLU directive is:

Label Mnemonic Operand
Must MAXCPU CONSTANT
be blank

CONSTANT is any numeric constant as described in Section
432

5.7 ORG - ORIGIN A PROGRAM

As described in Section 4.3.3, a symbol which is an instruc-
tion label acquires a value equa! to the memory address of
the first object program byte for the instruction. With
reference to Figure 5-1, therefore:

ONE acquires the value of H'0100’
LOOP acquires the value of H'0104A’

In order to assign values to instruction labels, the assembler
has to know where the object program will be stored once
it gets lnaded into an F8 microprocessor system memary,
this is done using the ORG directive.

When assembling a source program, the assembler main-
tains its own program counter, which tracks the memory ad-
dresses into which each byte of object program is destined
to be stored. Whenever the assembler encounters an ORG
directive, it resets its program counter to the address speci-
fied by the ORG directive. Thus in Figure 5-1 the ORG direc-
tive sets the effective memaory address to H'0100’ for the
first abject code byte of the first instruction that follows.

A program may have more than one ORG directive, depending
on how subroutines and program modules have been mapped
into memory. Any time there is a “gap” between one pro-
gram module and the next, the new origin must be specified
using an ORG directive.

The format of the ORG directive is as follows:

Label Mnemanic Operand
Must ORG VALUE
be blank

The ORG directive cannot and must not bave a label.

VALUE is any valid numeric value as described in Section
4.3.2, or any valid expression as described in Section 4.3.4.

5.8 SYMBOL - ASSEMBLER PROVIDEA SYMBOL
TABLE

This directive may optionally appear once, at the beginning

of a source program, as illustrated in Figure 5-1.

5-3

If the assembler encounters SYMBOL in the mnemonic field
of an instruction, it will print a symbol table at the end of
the assembly listing. The SYMBOL directive cannot, and must
not have a label.

A symbol table lists every symbol encountered in the source
program, along with the value assigned to the symbol,

A symbol table allows errors in symbols to be spotted quickly.
A misspelled symbol, for example, will appear in the symbol
table as an extra, unexpected symbol.

5.9 TITLE - PRINT A TITLE AT THE HEAD OF THE
ASSEMBLER LISTING

This is an optional directive, which. if present, causes a title

to be printed at the top of every assembier listing page. The

format of this directive is as follows:

Label Mnemonic Operand
Must TITLE “any heading”
be blank

The heading must be enclosed in double quotes. The TITLE
directive cannot, and must not, have a label.

5.10 XREF - ASSEMBLER PROVIDE A SYMBOL
CROSS REFERENCE LISTING

This directive may optionally appear once, at the beginning of

a source program, as illustrated in Figure 5-1.

If the assembler encounters XREF in the mnemonic field of
an instruction, it wtll print a cross reference listing of symbols
at the end of the assembly listing. The XREF directive cannot,
and must not, have a label.

A cross reference listing shows every symbol encountered in
the source program, plus the statement number at which the
symbol was referenced {i.e., appeared in an instruction’s
operand field).

A cross reference listing allows misplaced or misspelled
symbols to be quickly spotted and corrected.

65.11 WHEN TO USE ASSEMBLER DIRECTIVES
The END assembler directive must be present in a source pro-
gram. Without this directive the program will not assemble
correctly.

The ORG, DC and EQU directives are almast always used in
a program. Symbofs equated to a numeric value (using the
EQU directive} are recommended instead of having numeric
constants in instruction operands.

The remaining assembler directives are optional, to be used
for programming efficiency and convenience only.

9

9

THE INSTRUCTION SET

Because of the nature of the F8 family of devices, program
saquences are very dependent on device configurations.
Many instructions are important in some device configura-
tions, but do not apply, or are rarely used in other device
configurations. Therefore, individual F8 instructions shouid be
visualized as contributions 1o one {or more) of a number of
common, identifiable operation sequences, rather than as
equal entities.

It would be impossible to describe operation sequences with-
out first defining individual instructions; therefore, individual
instructions are defined in this section, and example pro-
grams representing common operation sequences are given
in Sections 7, 8, 9 and 10.

In this section instructions are described in alphabetic order
of the instruction mnemonic. This makes it easy to locate any
instruction. Examples in this section are very primitive, and
merely illustrate the operations performed by each instruc-
tion, Programs in Sections 7 through 10 are referenced for
comprehensive and realistic examples, Instructions are
grouped by type in Appendix D.

When instruction format is defined, optional items are enclosed
in square brackets. For example:

{LABEL] ADC
means that the instruction ADC may, or may not have a label.

Tables 6-1 and 6-2 identify the terms and abbreviations used
in Section 6.

Nval3 - This symbol is used to indicate an instruction
operand which defines the three low crder
bits of the instruction object code.

Nval4 - This symbol is used to indicate an instruction
operand which defines the four low order
bits of the instruction object code.

Nval8 - This symbol is used to indicate an instruction
operand which defines the 8-bit second byte
of the instruction object code.

Nval16 - This symbal is used to indicate an instruction
operand which defines the 3-bit second byte,
plus the 8-bit third byte of the instruction

object code.

Table 6-1. Operand Symbols
Instructions described in the rest of Section & generate 1, 2
or 3 bytes of object code.

The first byte of object code is always the instruction opera-
tion code. Selected ’‘short’” instructions use three or four
bits of the first byte to specify data.

The second byte of a 2-byte instruction provides either a
signed, or an unsigned, binary number.

The second and third bytes of three byte instructions provide
a 16-bit unsigned binary humber.

6-1

Value or Symbol
for Sreg
0 through 11

Scratchpad Register Specified
The first 12 scratchpad registers are
addressed directly.

120r S The scratchpad register address is
provided indirectly by ISAR.

13ocrl As 12, but the low order three bits of
ISAR are incremented after the scratch-
pad register is accessed.*

14o0rD As 12, but the low order three bits of

ISAR are decremented after the scratch-
pad register is accessed.”

* Modification of ISAR is described in Section 2.4.2.

Tabie 6-2. Operands Referencing Scratchpad Memory,
as Specified by Symbol Sreg

Object code types are illustrated below, with the instructions
using each object code type identified by instruction mnamonic.
See Appendix D for actual object code byte contents.

One Byte, Type 1

Bit Number

Ny - oy -

4-hit, unsigned binary
number, Represents register
designation (see Table §-2),
170 port number, or simple
data {Nval4, Table 6-1}

Instruction
Code

AS, ASD, CLR, DS, INS, LIS, LR {with Sreg). NS, OUTS, XS

One Byte, Type 2

Bit Number

Instruction 3-bit, unsigned binary
Code number {NVal3, Table 6-1}
LISL, LISU

One Byte, Type 2

7 6 65 4 3 2 1 0 Bit Number
[PP T
L. oot -

Instruction

Code

ADC, AM, AMD, CM, COM, DI, El, INC, LM, LNK, LR {nat
with Sreg). NM, NOP, OM, PK, POP, SL, SR, ST, XDC, XM

Two Byte, Type 1

Byte 1
7 -] 5 a4 3 Z 1 v}
HEREEENN
L vy
e ¥ an
Instruction
Code
Byte 2
¥ 8 5 a4 3 2 1 0 Bit Number
(T1r{ir1r111
L. vy
Vo
8-bit, binary
data {Nval8, Table 6-1)
Al Cl, IN, LI, NI, Ol, QUT, XI
Two Byte, Type 2
Byte 1
7 8 5 4 3 2 1 0 Bit Number
NN
L o
Vo
instruction
Code
Byte 2
6 5 4 3 2 1 Bit Number

(T T T T T[]
" _/

¥ SR
8-bit address displacement

BC, BF, BM, BNC, BNQO, BNZ, BP, BR, BR7, BT, BZ

Three Byte
Byte 1
7 6 s 4 3 2 1 0 Bit Number
(T TT1 T[]
. v
“v_
Instruction
Code
Byte 2
7 € 5 a4 3 2 1 0 Bit Number
trT T TT 117711
L. _/
—v
16-bit address {high byte} (Nval 16, Table 6-1)
Byte 3
T & 5 4 3 2 1 0 Bit Number
(T T T 0 b1 11
A i
—

16-bit address {low byte} (Nval 16, Table 6-1}
DCl, JMP, PI

6-2

6.1 ADC - ADD ACCUMULATOR TO DATA
COUNTER

The contents of the accumulator are treated as a signed binary
number, and are added to the contents of every DCO register.
The result is stored in the DCO registers, The accumulator
contents do not change.

FORMAT:

[LABEL] ADC

STATUS CONDITIONS:

No status bits are modified.

EXAMPLES:

Suppose the accumulator contains H'3E' and every DCO regis-

ter contains H'208A’. After execution of the ADC instruction,
every DCO register will contain H'20D8":

209A,

_SE

H’20D8’
Suppose the aceumulator contains H'A2’ and every DCOregis-
ter contains H'213E". In two's complement notation, H'A2’ is
a negative number, since the high order bit of the byte is 1.

HA2°'=10100010

Sign Bit = 1,
Value negative

Accardingly, after execution of the ADC instruction, every
DCO register will contain H'20EQ'C

213E
FFA2

H"20EQ’
See also Sactions 7.3.4., 7.5.1, and 9.3.2.

6.2 Al - ADD IMMEDIATE TO ACCUMULATOR
The 8-bit {two hexadecimal digit) value provided by the

instruction operand is added to the current contents of the
accumulator. Binary addition is performed.

FORMAT:

[LABEL] A Nval8

Nval8 is defined in Table 6-1

STATUS CONDITIONS:

Statuses modified: OVF, ZERQ, CARRY, SIGN
Statuses unaffectad: ICB

EXAMPLE:

Suppose the accumulator contains H'3F', After execution of
the instruction:

Al H'7E’

F e

f‘;'

the accumulator will contain H’'BD":

BitNo. C 76543210
H'3F = 00111111
H'7E = 01111110
HBD'= 0710111101

There is no carry out of bit 7, so CARRY = 0.
There is a carry out of bit 6 and no carry out of hit 7,
therefora OVF = 0 @ 1=1.

The result is not zero, so ZERO = 0.
The high order bit of the result is 1, so SIGN = 0.

See also Sections 8.2.7 and 10.1.3.

6.3 AM - ADD [(BINARY) MEMORY TQ
ACCUMULATOR

The content of the memory location addressed by the DCO

registers is added to the accumulator. The sum is returned in

the accumulator. Memeory is not altered. Binary addition is

performed. The contents of the DCO registers are incremented

by 1.

FORMAT:
[LABEL] AM
STATUS CONDITIONS:

Statuses modified: OVF, ZERO, CARRY, SIGN
Statuses unaffected: ICB

EXAMPLE:

Suppose the accumulator containg H'C2’, the DCO registers
contain H'213E’ and memory location H'213E' contains H'2A"
After an AM instruction has been executed, the DCO registers
will contain H’213F’, and the accumulator will contain H'EC'C

BitNe: € 765643210
HC2 = 11000010
H2A = 00101010
HEC'= 011101100

There is no carry out of bit 7, so CARRY = 0.

There is no carry out of bit 6 or bit 7, so OVF = 0 ® o=0.
The result is not zero, so ZERO = 0.

The high order bit of the resultis 1, so SIGN = 0.

See also Sections 7.2.2, 7.4.2, 10.2.2.

6.4 AMD - DECIMAL ADD, MEMORY TO
ACCUMULATOR

The accumulator and the memory location addressed by the

DCO registers are assumed to contain two BCD digits. The

content of the address memory byte is added to the contents

of the accumulator to give a BCD result in the accumulator,

praviding these steps are followed:

Decimal addition is, in reality, three binary events. Consider
B-bit decimal addition. Assume two BCD digit augend XY is
added to two BCD digit addend ZW, to give a BCD result PC:

XY
W
-PQ

6-3

Two carries are important; any intermediate carry (IC) out of
the low order answer digit {Q), and any overall carry (C) out
of the high order digit (P}. The three binary steps required to
perform BCD addition are as follows:

STEF 1 Binary add H'66' to the augend.

STEP 2 Binary add the addend to the sum from Step 1.
Record the status of the carry (C) and intermediate
carry {IC).

STEP 3 Add a factor to the sum from Step 2, based on the

status of C and IC. The factor to be added is given
by the following table;

Status from

In Step 3, any carry from the low order digit to the high order

Step 2

Cc IC Sum to be added
0 ¢ H'AA'

0 1 H'AQ"

1 0 H'OA'

1 1 H'0O"

digit is suppressed.

For exampie, consider 21 + 67 = 88.

21 = 00100001
67 = 01100111
STEP 1 H'21' 00100001
+ H'66" 01100110
= H'87' 10000111
STEP 2 H'87" 10000111
+ H'87' 1100111
= H'EE’ 11101110
c=0 I1C=0
STEP 3 H'EE’ 11101110
+HAA> 10101010
= H'88" 10001000
Carry
suppressed
DECIMAL ADD:

A decimal add is accomplished by executing a binary addition
of H'68’ to cne of the two BCD numbers, then executing the
AMD instruction, as follows:

Al H'66°
[LABEL] AMD

Always precedes AMD for addition

DECIMAL SUBTRACT:

Assume scratchpad byte O contains 1, the accumulator con-
tains the subtrahend and DCOQ addresses the minuend.
Dacimal subtraction is performed as follows:

COM ONES COMPLEMENT SUBTRAHEND
AMD DECIMAL ADD MINUEND

Al H'6&"

ASD 0O DECIMAL ADD 1 TO SUM

STATUS CONDITIONS:

Statuses modified: CARRY, ZERO

Statuses not significant: OVF, SIGN

Statuses unaffected: ICB

EXAMPLES:

DECIMAL ADD:

Assume the accumulator contains H'57°, the DCO registers

contain H’12FA’ and memory location H'12FA’ containg H'60".
After the execution of:

Al
AMD

H'66’

the accumulator will contain H'17’, and the DCO registers
will contain H'12FB’.

There is a carry, so CARRY=1, This carry indicates that the
result of the addition exceeded 99; therefore the carry must
be added to the next high order digit.

Other status indicators are modified, but their condition is
not significant.

DECIMAL SUBTRACT:

Assume the accumulator contains H'79’, the DCO registers
comtain H'32A7', memory location H'32A7' containg H'80
and scratchpad byte O containg H'01".

After executing:

COM

AMD

Al H‘66°
ASD O

the accumulator contains H'Q1',
There is no carry, soc CARRY = 0. No Borrow was required.

Status indicators other than carry are medified, but their
condition is not significant,

6.5 AS - BINARY ADDITION, SCRATCHPAD
MEMORY TO ACCUMULATOR

The content of the scratchpad register referenced by the in-
struction operand (Sreq) is added to the accumulator using
binary addition. The result of the binary addition is stored in
the accumulator. The scratchpad register contents remain
unchanged. Depending on the value of Sreq, ISAR may be
unaltered, incremented or decremented.

FORMAT:
[LABEL] AS Sreg

Sreg is definad in Table 6-2.

6-4

STATUS CONDITIONS:

Statuses modified: OVF, ZERO, CARRY, SIGN
Statuses unaffectad: ICB

EXAMPLE:

Suppose the accumulator contains H'34’ and scratchpad
register 11 contains H'72". After the instruction:
AS 11

is executed, the accumulator will now contain H'AG"

Bit No: C76543210
H34 = 00110100
H72 = 01110010
HA8"= 010100110

Thera is no carry out of bit 7, so CARRY =0.
There is a carry out of bit 6, but not out of bit 7,
soOVF=0 (B 1=1.

The result is non-zero, sc ZERQ = 0.
The high order bit of the result is 1, sa SIGN = 0.

Suppose the accumulator contains H'7E", ISAR contains 027
and scratchpad register 23 (=0°27") contains H'A2'. After
the instruction;

AS D

is executed, the accumulator will contain H'20¢, and ISAR will
increment {low order octal digit only) to O'26":

Bit Nc: C76543210
H'7E = 01111110
HA2 = 10100010
H20= 1001000020

There is a carry out of bit 7, so CARRY = 1.

There is a carry out of bit 6 and bit 7, so OVF =1 ® 1=0
The result is non-zero, so ZERO = 0.

The high order bit of the result is 0, so SIGN =1,

Had the AS instruction operand been {, ISAR contents would
have been decrementad to 0'20"; had the AS instruction oper-
and been $, ISAR contents would have remained unchanged.

See also Sections 7.1.2, 7.1.4, and 7.2.2.

6.6 ASD - DECIMAL ADD, SCRATCHPAD TO
ACCUMULATOR

The ASD instruction is similar to the AMD instruction, except

that instead of adding the contents of the memory byte ad-

dressed by the DCO registers, the content of the scratchpad

byte addressed by operand {Sreg} is added to the accumulator.

FORMAT:
DECIMAL ADD:
Al

H'66" ALWAYS PRECEDES ASD FOR

ADDRITION

F e

[LABEL] ASD Sreg

Sreg is defined in Table 6-2.

DECIMAL SUBTRACT:
COM ALWAYS PRECEDES ASD FOR
SUBTRACTION
[LABEL]) ASD Sreg
Al H'66°
ASD ONE SCRATCHPAD BYTE ONE
CONTAINS H'O1’
STATUS CONDITIONS:

The status bits have the same significance as they do for the
AMD instruction.

EXAMPLES:
DECIMAL ADD:

Assume the accumulator contains H’42, the ISAR contains
0'64', and scratchpad register 0’64’ contains H'83".

After the instruction sequence:

Al H'66°
ASD D

is executed, the accumulator will contain H'25". ISAR will
contain 0'53".

There is a carry, so CARRY = 1.

Other status indicators are modified, but their condition is
not significant.

6.7 BRANCH INSTRUCTIONS

The Branch instruction is used to modify a program’s instruc-
tion execution sequence by altering the contents of the pro-
gram counters, PCO. In a conditional branch instruction,
alteration occurs when specified branch test conditions are
met. in an unconditional branch ingtruction, a branch occurs
simply as the result of the execution of the instruction.

All branch instructions are two-byte instructions. The first
byte is the object code of the instruction mnemenic. The sec-
ond byte is a displacement which is added to the program
counter if a branch occurs,

Conditional branch mnemonics: BC, BF, BM, BNC, BNO, BNZ,
BP, BR7, BT, BZ

Unconditional branch mnemonics: BR

FORMATS:
[LABEL] OP DEST
OP is one of the mnemonics BC, BM, BNC, BNO, BNZ,

BP, BR7 or BZ.

DEST is an expression which evaluates to the memory ad-
dress to which a branch may occur. Frequently DEST

tabels the instruction to which a branch may cccur.

6-5

[LABEL] OFP t DEST

OF is one of the mnemonics BF or BT.

t is a condition specification, as given in Table 6-5 for
BT, or in Table 6-4 for BF.

DEST is as described above.

Relative branching is performed within a range of 127 ad-

dress locations forward and 128 address locations behind
the address of the branch instruction’s second byte,

All branch instructions are similar in operation, the only dif-
ference is the conditions under which a branch occurs. Tha
instruction BC - BRANCH ON CARRY will be used as an
example of how the branch instructions are executed.

When a BC instruction is executed a branch occurs to the
instruction whose label is specified in BC instruction operand,
but only if the Carry bit is set at the tima the BC instruction
is executed.

First, consider a BRANCH FORWARD as indicated in the
following instruction sequence;

Memory Object Source

Address Code Program

H'4ADE’ H'88 -t AM

H'4ADF' H'82 -f— BC LOOP

H'4AEQ" H*7F’ —)

H'4AET" L« —
Displacement = H'7F" —

H'4B5F* H'1F* LOOP INC

Fig. 6-1. Generation of a Displacement Object Program Byte in

Response to a Forwerd Branch
Figure 6-1 illustrates source and consequent object program.

Assume the Carry bit is set as a result of the AM instruction
execution and the contents of the program counters, PCO, are
equal to H'3AEQ", subsequent to the BC instruction operand
fetch. A branch to H'4B5F’ is indicated by the BC instruction
as follows:

The displacement vector between H'4B5F’ and H'4AEQ" must
be added to the program countars. This vector {(+D127°} will
have been calculated by the assembler and stored in the
second byte of the BC instructions object code.

When a single byte displacement vector is added to the con-
tents of the program counters, the most significant bit of the
single byte displacement vector is propagated through the
high order gight bits of the addition as follows:

8it No: 1514131211109876643210
H'4AEQ’ 01 001 010111000020
H'7F 000 0O 00001111111
H'ABSF’ 01 001 01101011111

Next, consider a BRANCH BACKWARD as indicated in the
following instruction sequence:

Memory Object Source Table 6-3 lists the branch instruction mnemenics and the con-

Address Code Program diticns under which a branch will occur.
H'B612") H'1F«LOOP iNC
. — Lrer : INSTRUCTION BRANCH WILL EXAMPLE
(Displacement ‘l"—]?g _ MNEMONIC OCCURIF | IN SECTION
H'BES0’ H'88" g AM BC - BRANCH ON o
. P gy CARRY Carry bit is set (10,21
H'B691 H'B2’ - BC LOOP
- FALSE See Table 6-4
. - T . . BM - BRANCH ON
. B-2. |

P62 Geernin of Dt st rogam Byein | \GaTvE i it e

P BNC- BRANGH iF

NO CARRY Carry bit is reset
Assume the carry bit is set and the program counters con- BNO- BRANCH IF
tain H'BE692°, subsequent to the BC instruction operand fetch. NQ OVERFLOW |OVF bit is reset [7.1.4, 7.3.3, 7.35
A branch to H'B612’ is indicated by the BC instruction as BNZ - BRANCH IF
follows: NOT ZERO Zero bit is reset (7.1.3,7.2.1, 7.2.2
The displacement vector between the address of the second BP - BRANCH IF , .
byte of the BC instruction and the address of the instruction BR Zgig:/[EITIONAL Signbitis set 17.3.4,8.1.1,81.3
labeled LOOP is added to the PCO registers. The displaca- i
ment vector will have been calculated by the assembler and BRANCH Always 714,722,734
BR7 - BRANCH

stored in the secoend byte of the BC instruction object program.
In the case of a BRANCH BACKWARD, the negative displace- ON ISAR Any of the low

ment will be a two's complement number. Since the high 3 bits of ISAR
order (sign} bit of the displacement is 1, it will be propagated are reset 711,712,827
through the high order eight bits of the addition as follows: BT - BRANCH
ON TRUE See Table 6-5
; . BZ - BRANCH
3'.'323‘2. 1? 13 1? 1:1! 1(1, 1? ? g ? g g ? g g 1 g ON ZERO Zerobitisset [7.2.1,7.2.2, 7.3.4
H'80’ T 1 1 11 11110000000
H'B612' T 011 0 11000010010 Table 6-3. Branch Conditions
OPERAND | STATUS FLAGS TESTED
t OVF| ZERO| CARRY | 5IGN DEFINITION COMMENTS
0 0 0 4] 0 |Unconditional Branch
relative
1 0 o 0 1 | Branch on negative Same as BM
2 o) o) 1 Q |Branch if no carry Same as BNC
3 4] 0 1 1 |Branch if no carry
and negative
4 0 1 0 O |Branch if not zero Same as BNZ
5 Q 1 0 1 Same as 1=1
6 o 1 1 O |Branch if no carry
and result is no zero
7 4] 1 1 1 Same as t=3
8 1 Q |Branch if there is no Same as BNO
overflow
9 1) 4 1 |Branch if negative and
no overflow
A 1 o 1 Q |Branch if no overflow
and no carry
B 1 0 1 1 {Branch if no overflow,
no carry & negative
c 1 1 0 O |Branch if no overflow
and not zero
D 1 1 0 1 Same as t=9
E 1 1 1 O | Branch if no overflow,
no carry & not zero
F 1 1 1 1 Same as t=B

Table 6-4. Branch Conditions for BF Instruction

6-6

9

-9

OPERAND | STATUS FLAGS TESTED
t ZERQ | CARRY | SIGN DEFINITION COMMENTS
0 0 0 0 Do not branch An effective 3
cycle NO-OP
1 0 0 1 Branch if Positive Same as BP
2 0 1 0 Branch on Carry Same as BC
3 0 1 1 Branch if Positive
or on Carry
4 1 0 0 Branch if Zero Same as BZ
5 1 0 1 Branch if Positive Same as t=1
6 1 1 0 Branch if Zero or
on Carry
7 1 1 1 Branch if Positive or Same as t=3
or on Carry

Table -5. Branch Conditions for BT Instruction

6.7.1 BF - Branch on Faise

The BF - BRANCH ON FALSE instruction will branch if the
status bits selected by t in Table 5-4 are all reset. Selected
bits are identified in Table 6-4 by 1 under "Status Flags
Tested”; selected status bits must all be zero. Unselected
status bits are ignored.

6.7.2 BT - Branch on True
The BT - BRANCH ON TRUE instructions will branch if any
test conditions defined by t in Table 6-5 ara met.

6.8 Cl- COMPARE IMMEDIATE

The contents of the accumulator are subtracted from the op-
erand of the Cl instruction. The resuit is not saved but the
status bits are set or reset to reflact the results of the
operation,

FORMAT:
[LABEL] CI Nval8

Nval8 is defined in Table 6-1.
STATUS CONDITIONS:

Statuses modified: OVF, ZERQ, CARRY, SIGN
Statuses unaffected: ICB

EXAMPLE;
Assume the accumulator contains H'1B’ and the second byte

of the instruction contains H'D8'. The comparison is made
as follows:

Bit No: C76543210
H"1B’ 0011011
two's comp: 11100101
H'D8’ 11011000
H'BO' 110111101

The H'BOD' result is not saved.

There is a carry out of bit 7, so CARRY = 1.

There is also a carry out of bit 6, so OVF=1 (&) 1=0.
The resuit is not zero, so ZERQ = 0.

The high order bit is 1, so SIGN = 0.

See also Sections 7.3.4, 8.2.7, 8.3.3.

6.9 CLR - CLEAR ACCUMULATOR

The contents of the accumulator are set to zero.
FORMAT:
[LABEL] CLR

STATUS CONDITIONS:

Mo status bits are modified.

EXAMPLE:

Assume the accumulator contains H'AQ’. After the CLR
instruction has executed, the accumulator contains H'0O".

See also Sections 7.1.1, 7.3.5, and 4.3.3.

6.10 CM - COMPARE MEMORY TO
ACCUMULATOR

The CM instruction is the same as the CI instruction except

the memory contents addressed by the DCO registers, instead

of an immediate value, are compared to the contents of the

accuemulator.

Memory contents are not altered. Contents of the DCO
registers are incremented.

FORMAT:
[LABEL] CM

See also Section 9.3.3.

8.11 COM - COMPLEMENT

The accumulator is loaded with its one’s complement.
FORMAT:
[LABEL] COM

STATUS CONDITIONS:
Statuses modified: ZERO, SIGN

Statuses reset: OVF, CARRY
Status unaffected: ICB
EXAMPLE:

If the accumulator contains H'8B’, after the COM instruction
is executed, it will contain H'74".

The Zero bit is resset to O since the result is not zero.

The Sign bit is set to 1 since the high order bit of the result
is 0.

The OVF and Carry bitg are unconditionally reset to Q.

See also Sections 7.1.2, 7.2.2, and 7.4.2,

6.12 DCI - LOAD DC IMMEDIATE
The DCI instruction is a three-byte instruction. The conternts

of the second byte replace the high order byte of the DCO
registers; the contents of the third byte replace the low order
byte of the DCO registers.
FORMAT:
[LABEL] DCI Nvall6
Nval16 is defined in Table 6-1.
STATUS CONDITIONS:
The status bits are not affected.
EXAMPLE:
After the instruction:

DCI H2317
is executed, the DC registers will contain H'2317".

See also Sections 7.2.1, 7.2.2, 7.4.1.

6.13 DI - DISABLE INTERRUPT

The interrupt control bit, ICB, is reset; no interrupt requests
will be acknowledged by the 3850 CPU.

FORMAT:
[LABEL] DI
STATUS CONDITION:S:

Statuses reset: |ICB
Statuses unaffected: OVF, ZERD, CARRY, SIGN

6-8

6.14 DS - DECREMENT SCRATCHPAD
CONTENT

The content of the scratchpad register addressed by the op-

erand {Sreg) is decremented by one binary count. The

decrement is performed by adding H'FF’ to the scratchpad

register.

FORMAT:
[LABEL] DS Sreg

Sreg is defined in Table 6-2.
STATUS CONDITIONS:

Statuses modified: OVF, ZERO, CARRY, SIGN
Statuses unaffected; ICB

EXAMPLE:

Assume the ISAR contains 023" and the scratchpad register
0’23 contains H'17°. After the instruction:

DS D

is executed, scratchpad register 0°23° contains H'16’ and
the ISAR contains 0'22°. The accumulator is unaffected.

There is a carry out from bit 7, so CARRY = 1.

There is a carry out from bit 6, so OVF =1 (®) 1=0.
The result of the decrement is non-zaro, so ZERO = 0.
The most significant bit is O, so SIGN = 1.

See also Sections 7.1.3, 7.2.1 and 7.2.2.

6.15 EI - ENABLE INTERRUPT

The interrupt control bit is set. Interrupt requests will mow be
acknowledged by the CPU.

FORMAT:
[LABEL] EIl

STATUS CONDITIONS:
ICB is setto 1.

All other status bits are unaffected.

See also Sections 8.2.7, 8.3.1, and 8.3.3.

6.16 IN - INPUT LONG ADDRESS

The data input to the 1/0 port specified by the operand of the
IN instruction is stored in the accumulator.

The 1/0 port address assignments are given in Table 6-6.1/0
ports with addresses 4 through 265 may he addressed by
the IN instruction. 170 ports with port addresses O through
15 may be accessed by the INS instruction (see Section 6.17).

The IN instruction generates two bytes of object code, whereas
the INS instruction generates one byte of object code.

If an 1/0 port or pin is being used for both input and output,
the port or pin previously used for output must be cleared
hefore it can be used to input data.

A

[

RESERVED
FOR
3850 CPU

PORT ADDRESS
(HEXADECIMAL)

BY
3851 PSU

MAY BE USED

MAY BE USED

MAY BE USED
BY
3853 SMI

MAY BE USED
BY
3854 DMA

BY
38562 DMI

00
o1

02
03
04

OB

oD
OE
OF

{NOTE 1}

{NCTE 4}

10

{NOTE 2)

(NOTE 4)

(NOTE 3)

FF

Table 6-6. 1;0 Port Address Assignmants

NOTE 1: These I/0 port addresses may not be used by PSU’s
if a 3852 DMI or 3853 SMI device is used,

Thaese |70 port addresses may not be used by PSU’s
if a8 SL31116 DMI device is used.

170 port addresses used by DMA devices may notbe
used by PSU’s.

Two versions of the 3852 DMI device are available,
One uses port assignments H'OC’ and HOD’; the
other uses port assignments H'EC’ and H'ED".

NOTE 2:
NOTE 3:

NOTE 4:

FORMAT:
[LABEL] N Nval8

Nval8 is defined in Table 6-1.
STATUS CONDITIONS:
Statuses modified: ZERQO, SIGN

Statuses reset. OVF, CARRY
Statuses unaffected; ICB

EXAMPLE;

Assume that the value H'C8’ has been input by an external
device to |/0 part H'10". After the instruction:

IN H10'

is executed, the accumulator will contain H'37".
the

Note that

data is complemented between 1/0 pin and accu mulator.

The overflow and carry bits are unconditienally reset, so
OVF = CARRY = 0.

The accumulator content is non-zero, so ZERO = Q.
The most significant bit is zero, so SIGN = 1.

See also Sections 7.6.2 and 8.4.3.

6.17 INC - INCREMENT ACCUMULATOR

The content of the accumulator is increased by one binary
count.

FORMAT:
[LABEL] INC
STATUS CONDITIONS:

Statuses modified: OVF, ZERQO, CARRY, SIGN
Statuses unaffected: ICB

EXAMPLE:

Assume the accumulator contains H'FF’. After an INC
instruction execution, the accumulator containg H'0O".

There is carry out from bit 7, so CARRY = 1.

There is also a carry out from bit 6, sc OVF =1 () 1=0.
The result ig zero, so ZERQ =1, and §IGN = 1.

See also Section 8.3.3 and 10.2.2.

6.18 INS - INPUT SHORT ADDRESS

Data input to the |/0 port specified by the operand of the INS
instruction is loaded into the accumulator. An L/0 port with
an address within the range 0 through 15 may be accessed by
this instruction.

If an 170 port or pin is being used for both input and output,
the port or pin praviously used for output must be cleared
before it can be used to input data.

FORMAT:

[LABEL] INS Nvald

Nval4 is defined in Table 6-1.
STATUS CONDITIONS:

Statuses modified: ZERO, SIGN
Statuses reset: OVF, CARRY
Statuses unaffected: ICB

EXAMPLE:

Assume that the 3850 CPU /0 port addressed by H'01°
contains H'79". Execution of the instruction:

INS 1
causes the accumulator to be loadad with H'86",

The overflow and carry bits are reset, so OVF = CARRY = 0.
The accumulator content is non-zero, so ZERO = 0.
The most significant bit is 1, so SIGN = 0.

6.19 JMP - BRANCH IMMEDIATE

As the result of a JMP instruction execution, a branch to the
memory location addressed by the second and third bytes of
the instruction occurs. The second byte contains the high
order eight bits of the memory address; the third byte
contains the low order eight bits of the memaory address.

The accumulator is used to temporarily store the most sig-
nificant byte of the memory address; therefore, after the JMP
instruction is executed, the initial contents of the accumulator
are |ost,

FORMAT:
[LABEL] JMP Nvall6
STATUS CONDITIONS:

No status bits are affected.

EXAMPLE:

Assume the operand of the JMP instruction contains H'G3AE".
After the instruction:
JMP H'03A4"

is executed, the next instruction will execute from address
H’'03A4’. At the completion of this execution, the accumulator
contains H'03".

See also Section 7.3.4 and 7.5.1.

6-10

6.20 LI - LOAD IMMEDIATE

The value provided by the operand of the LI instruction is
loaded into the accumulator.

FORMAT:
[LABEL] LI Nval18
STATUS CONDITIONS:

No status bits are affected.
EXAMPLE:

Assume the second byte of the LI instruction containg H'C7".
The instruction:

LI HC7
causes the accumulator to be loaded with H'C7".

See also Section 7.1.3, 7.2.1, and 7.2.2.

6.21 LIS - LOAD IMMEDIATE SHORT
A 4-bit value provided by the LIS instruction operand is loaded

into the four least significant bits of the accumulator. The
most significant four bits of the accumulator are set o g,
FORMAT:
[LABEL] LIS Nvald
Nval4 is defined in Table 6-1.
STATUS CONDITIONS:
No status bits are modified.
EXAMPLE:
After the instruction:

Ls 3

has executed, the accumulator will contain H'03".

See also Section 7.2.2, 7.3.4 and 8.3.2.

6.22 LISL - LOAD LOWER OCTAL DIGIT OF ISAR
A 3-bit value provided by the LISL instruction operand is

loaded into the three least significant bits of the ISAR. The
three most significant bits of the 1SAR are not altered.
FORMAT:
[LABEL] LISL Nval3
Nval3 is defined in Table 6-1.
STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Suppose ISAR contains the value O°72". After the instruction:
LISL 6

has executed, ISAR will contain the value Q'76',
See also Section 7.1.1, 7.1.2 and 8.2.7.

6.23 LISU - LOAD UPPER OCTAL DIGIT OF ISAR
A 3-bit value provided by the LISU instruction operand is

loaded into the three most significant bits of the ISAR. The
three least significant bits of the ISAR are not altered.
FORMAT:

[LABEL] Nwval3

Nval3 is defined in Table 6-1.

STATUS CONDITIONS:

No status bits are affected.

EXAMPLE:

Suppose ISAR contains the value O'72’. After the instruction:
LIsu 3

has executed, ISAR will contain the value 0°32'.

See also Section 7.1.1, 7.1.2, and 8.2.7.

6.24 LM - LOAD ACCUMULATOR FROM
MEMORY

The contents of the memory byte addressed by the DCO reg-
isters are loaded into the accumulator. The contents of the
DCO registers are incrementad as a result of the LM instruction
executian.

FORMAT;
[LABEL] LM
STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Assume the DCO registers contain H’37A2' and the memory
location addressed by H'37A2’ contains H'2B’. Execution of
the LM instruction causes the accumulator to be loaded with
H'2B". The DCQ registers subsequently will contain H'37A3",

6.25 LNK - LINKCARRYTOTHE ACCUMULATOR

The carry bit is binary added to the least significant bit of the
accurnulator. The result is stored in the accumulator.

FORMAT:
[LABEL] LNK

STATUS CONDITIONS:

S

8-11

Statuses modified: OVF, ZERO, CARRY, SIGN
Statuses unaffected: ICB

EXAMPLE:

Assume the accumulator contains H'84", and the CARRY bit
is set. The instruction execution causes the accumulator to
contain H'85".

As 2 result of the instruction execution, there is no carry out
of bit 7, so CARRY = 0.

There is also no carryout of bit 6, so OVF =0 & 0=0.
The result is non-zero, so ZERO = 0.

The most significant bit of the resuit is 1, so SIGN = 0.

See also Section 7.1.2, 7.1.4 and 7.2.2.

6.26 LR - LOAD REGISTER
The LR group of instructions move one or two bytes of data

between a source and destination register. Instructions exist
to move data between the following registers:

a) A scratchpad register and the Accumulator

b} Scratchpad registers and the Data Counter, DCO
¢} The Accumulator and the ISAR

d) Scratchpad register 9 and the status registar

8) Scratchpad registers and Program Counter, PCO
f) Scratchpad registers and stack register, PC1

An LR instruction’s data source and destination is determined
by the instruction operands as illustrated in Table 6-7. The

number of data bytes moved {one or two) depends on the
size of the source and destination registers {8 or 16 bits).

FORMAT:
[LABEL] LR D.,S

§ is the source register.
D is the destination register.

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:
Assume the ISAR contains O'76°. After the instruction:
LR AIS

is executed, the accumulator contains 0'76°. Seratchpad
register 0’76’ remains unchanged. ISAR also remains
unchanged.

6.27 NI - AND IMMEDIATE

An 8-bit value provided by the operand of the NI instruction
is ANDed with the contents of the accumuiator. The results
are stored in the accumulator.

FORMAT;
[LABEL]

NI Nvalg

LR
INSTRUCTION EXAMPLE GIVEN
OPERANDS LOADS FROM IN
DESTINATION SOURCE REGISTER REGISTER WITH SECTION
A, KU Accumulator Scratchpad register 12 8-bit contents 734,736
A, KL Accumulator Scratchpad register 13 B-bit contents 734 736
A, au Accumulator Scratchpad register 14 8-hit contents
A, aL Accumulator Scratchpad register 15 8-bit contents
KU, A Scratchpad register 12 Accumulator 8-bit contents 8.4.3
KL, A Scratchpad register 13 Accumulator 8-bit contents 843
Qu, A Scratchpad register 14 Accumulator 8-bit contents 7.34,67.36
QL, A Scratchpad register 15 Accumulator 8-bit contents 7.34, 736
K, P Scratchpad register 12 Program Counter PC1 High order B-bit byte| 7.3.4, 7.3, 736
Scratchpad register 13 Program Counter PC1 Low order 8-bit byte
P, K High arder byte of PCI1 Scratchpad register 12 8-bit contents 8.4.3
Low order byte of PC1 Scratchpad register 13 g8-bit contents
A, IS Accumulator ISAR QOXOOKX 7.34,8.2.7
X's are contents
of ISAR
IS, A ISAR Accumulator Low order 6-bits. 734,735,827
PO, a High order byte of PCO Scratchpad register 14 8-bit contents 73,475
Low order byte of PCO Scratchpad register 15 8-bit contents
Q. DC Scratchpad register 14 Data counter registers DCO | High order byte 722,736,742
Scratchpad register 15 Data counter registers DCO| Low order byte
DC. a High order byte DCO Scratchpad register 14 8-bit contents
Low order byte DCO Scratchpad register 15 8-bit conterts 7.2.2,7.33 734
DC, H High order byte of DCO Scratchpad register 10 B8-bit contents
Low order byta of DCO Scratchpad register 11 8-bit contents
H. DC Scratchpad register 10 Data counter register High order byte 722,734, 736
Scratchpad register 11 Data counter register Low order byte
W, J Status register (w) Scratchpad register 9 Low order 5 bils 7.1.2,7.2.2 741
J w Scratchpad register 9 Status register {(w) COOXOXX 7.1.2,722 733
X’'s are contents
of status register
A, (Sreg)* |Accumulator Scratchpad register (Sreg) | B-bit contents 7.1.2, 714,741
{Sregl* A Scratchpad register {Sreg)| Accumulator 8-bit contents 711,712,713

“Sreg is a hexadecimal digit representing 2 scratchpad register, as defined in Table 6-2.

Table 6-7. LR Instruction Operand Definitions

STATUS CONDITIONS:

Statuses reset to 0: OVF, CARRY
Statuses modified: ZERQ, SIGN
Statuses unaffected: ICB

EXAMPLE:
Assume the second byte of the NI instruction contains H'36’,

and the accumulator contains H'ZA" as a result of the
instruction execution, the accumulator contains H'22".

Bit No: 76543210
H'36' 00110110
H'2A' 00101010
H'22’ 00100010

There is no carry out of bit 7, so CARRY = Q.

There is no carry out of hit 6, so OVF =0 (B 0=0.
The result is non-zero, so ZERQ = 0.

The most significant bit is zero, so SIGN = 1.

See also Section 7.1.2, 7.2.2 and 7.3.3.

6.28 NM - LOGICAL AND FROM MEMORY

The content of memory addressed by the data counter reg-
isters is ANDed with the content of the accumulator. The
results are stored in the accumulator. The contents of the
data counter registers are incremented.

FORMAT:

[LABEL] NM

STATUS CONDITIONS:

Statuses reset to 0: OVF, CARRY
Statuses modified: ZERQ, SIGN
Statuses unaffected: ICB

EXAMPLE:

Assume the data counters contain H'49AC’, the memory lo-
cation addressed by H'49AC’ contains H'67" and the accumu-
lator contains H'A%'. After execution of the NM instruction,
tha accumulator contains H'21’, and the data counters contain
H'49AD".

Bit No: 766543210
H'67 01100111
H'A9 10101001
H'21° 00100001

’ Also see Section 7.6.1.

6.29 NOP - NO OPERATION
No function is performed.

FORMAT:
; [LABEL] NOP
STATUS CONDITIONS:

| Ne status bits are modified.

EXAMPLE:

Assume the program counters contain H'2700’. After a NOP
instruction is executed, the PCO registers contain ‘H2701".

Also ses Section 8.4.3.

6.30 NS - LOGICAL AND FROM SCRATCHPAD
MEMORY

The content of the scratchpad register addressed by the op-

erand (Sreg} is ANDed with the content of the accurmulator.

The results are stored in the accumulator.

FORMAT:
[LABEL] NS Srag

Sreg is defined in Table 6-2.
STATUS CONDITIONS:

Statuses reset to O: OVF, CARRY
Statuses modified: ZERO, SIGN
Statuses unaffected; ICB
EXAMPLE:

Assume scratchpad register 002’ contains H'F2’, and the
accumulator contains H'2F". Execution of the instruction:
NS 2

causes the accumulater to contain H'22”,

Bit No: 76543210
H'F2* 11110010
H'2F 00101111
H22’ 00100010

There is no carry out of bit 7, so CARRY = Q.

Thera is also no carry out of bit 6, so OVF =0 (3 0=0.

The result is non-zerg, so ZERQ = 0.

The most significant bit of the result is zero, so SIGN = 1.

Also see Section 7.6.1 and 7.6.2.

i

6.31 0Ol - OR IMMEDIATE

An 8-bit value provided by the operand of the /0 instruction
is ORed with the contents of the accumulater. The results
are stored in the accumulator.

FORMAT:
[LABEL] Ol Nvalg

MNval8 is defined in Table 6-1.
STATUS CONDITIONS:
Statuses modified: ZERQ, SIGN

Statuses reset; OVF, CARRY
Statuses unaffected:; ICB

EXAMPLE:

Assume the accumulator contains H'OA’. The execution of
the instruction:
Ol HAY

causes the accumulator to contain H'AB’.

Bit No: 76543210
H'AB’ 10100011
H'OA' 00001010
H'AB" 10101011

The accumulator result is non-zero, so ZERQ = Q.

The most significant bit of the result is 1, so SIGN = 0.

The overflow and carry bits are reset, s0 OVF = 0 and
CARRY = 0.

Also see Section 7.6.1.

6.32 OM - LOGICAL "OR"” FROM MEMORY

The content of memory byte addressed by the data counter
registers is ORed with the content of the accumulator. The
results are stored in the accumulator. The data countar
registers are incremented.

FORMAT:

[LABEL] OM

STATUS CONDITIONS:

Statuses modified: ZERO, SIGN
Statuses reset: OVF, CARRY
Statuses unaffected: ICB

EXAMPLE:

Assume the DC registers contain H'FC19’, the memory lo-
cation addressed by H'FC19’ contains H'16°, and the accumu-
tator contains H'81". After execution of an QM instruction,
the accumulator contains H'97' and the DC registers will
contain H'FC1A’.

Bit No: 786643210
H16' 00010110
H'81’ 10000001
H'87 10010111

The result is non-zero, so ZERO = 0.

The most significant bit of the result is 1, so SIGN = 0.

The overflow and carry bits are unconditionally reset, so
OVF = 0 and CARRY = 0.

6.33 OUT - OUTPUT LONG ADDRESS

The 1/0 port addressed by the operand of the QUT instruction
is loaded with the contents of the accumulator,

I/0 ports with addresses from 4 through 255 may be accessed
with the QUT instruction.

The OUT instruction generates two bytes of object code, where-
as the QUTS instruction generates one byte of object code.

The |/0 port addresses are defined in Table 6-6.

FORMAT:
[LABEL] OUT Nvai8
Nval8 is defined in Table 6-1.
STATUS CONDITIONS:

No status bits are modified.

EXAMPLE’

Assume the accumulator centains H'2A’'. Execution of the
instruction:

OUT H'FE’

will cause the 1/0 port H'F6’ to be loaded with H'D5".
Note that the data at the /O ping is complementaed with
respect to the accumulator.

6.34 OUTS - OUTPUT SHORT ADDRESS

The 170 port addressed by the operand of the QUTS instruction
object code is loaded with the contents of the accumulator.
|70 ports with addresses from 0 to 16 may be accessed by this
instruction. The 1/0 port addresses are defined in Table 6-6.
Quts.0 or 1 is CPU port only.

FORMAT:
[LABEL] OUTS Nvald
Nval4 is defined in Table 6-1.
STATUS CONDITIONS:

No status bils are modified.

EXAMPLE:

Assume the QUTS instruction operand (Nvald) is H'OF’, and
the accumulator contains H'32’. Execution of the instruction:

6-14

oUTs 156

will cause the 170 port H'OF' to contain H'CD'".

Also see Section 7.2.1, 8.1.1 and 8.1.3.

6.35 Pl - CALL TO SUBROUTINE IMMEDIATE

The contents of the Program Counters are stored in the
Stack Registers, PC1, then the 16-bit address contained in
the operand of the Pl instruction is loaded inte the Program
Counters.-The accumulator is used as a temporary storage
register during transfer of the most significant byte of the
address. Previous accumulator results will be altered.

FORMAT:

[LABEL] P{ Nvallé

Nval16 is defined in Table 6-2.
STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Assume that the operand of the Pl instruction contains
H'32A1’, the program counter (PCO) registers contain
H’ABCD’, and the Stack registers {PC1) contain H'1234"
Execution of the instruction:

Pl H'32A1°

causes the Stack registers {PC1) to contain H'ABCD’, and
the program counter registers (PCO) to contain H'32A1".

Alsp see Section 7.3.3, 7.3.6 and 8.1.1.

6.36 PK - CALL TO SUBROUTINE DIRECT AND
RETURN FROM SUBROUTINE DIRECT

The contents of the Program Counter Registers (PCO) are
stored in the Stack Registers {PC1), then the contents of the
Scratchpad K Registers (Registers 12 and 13 of scratchpad
memory) are transferred into the Program Counter Ragisters.

FORMAT;
[LABEL] PK

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Assume Scratchpad Register 12 contains H'AB’, Scratchpad
Register 13 containg H'CD", and the Program Counter Reg-
isters (PCO} contain H'1234". Execution of the instruction PK
causes the Stack Registers to contain H'1234” and the Program

Counter Registers to contain H'ABCD".

Also see Sections 7.3.3, 7.4.1 and 8.2.7.

6.37 POP - RETURN FROM SUBROUTINE
The contents of the Stack Ragisters {(PC1) are transferred to
the Program Counter Registers (PCO)

FORMAT:
[LABEL] POP

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Assume the Stack Registers (PC1) contain H'ABCD’ and the
Program Counter Registers (PCO} contain H'1234'. When the
POF instruction has been executed, the PCO registers will
contain H'ABCD' and PC1 will not be changed.

Also see Sections 7.3.3, 7.3.4 and 8.2.7.

6.38 SL- SHIFT LEFT

The contents of the accumulator are shifted feft either one or
four bit positions, depending upon the value of tha SL
instruction operand,

If the value of the operand is 1, the accumulator contents are
shifted teft one bit position. The least significant bit becomes

a Zerog.

If the value of the operand is 4, tha accumulator contents ara
shifted left four bit positions. The four least significant bits
are filled with zeroes.

FORMAT:
[LABEL] SL Nvald

Nvald =1 or 4

STATUS CONDITIONS:

Statuses modified: ZERQ, SIGN
Statuses reset: OVF, CARRY
Statuses unaffected: ICB

EXAMPLE:

Assume the accumulator contains H'81'. The execution of
the instruction;

SL 1

causes the accumulator to contain H'02’. Execution of the
instruction:

Sl 4

causes the accumulator to contain H 10"

in both examplas the result is non-zero, so ZERD = 0.

The most significant bit of the results is zero, so SIGN = 1.7
The overflow and carry bits are unconditionally raset, so OVF
and CARRY = Q.

Also sea Sections 8.4.3, 8.3.2 and 10.3.

6.39 SR - SHIFT RIGHT

The contents of the accumulator are shifted right either one
or four bit positions, depending on the value of the SR
instruction operand.

If the value of the operand is 1, the accumulator contents are
shifted right one bit position. The most significant bitbecomes
a zero.

If the value of the operand is 4, the accumulator contents
are shifted right four bit positions. The four most significant
bits are filled with zeroes.

FORMAT:

[LABEL] SR Nvald

Nvald=1or 4

STATUS CONDITIONS;

Statuses modified: ZERO, SIGN
Statuses reset: OVF, CARRY
Statuses unaffected: ICB

EXAMPLE:

Assume the accumulator centains H'81'. Execution of the
instruction;

SR 1

causes the accumulator to contain H'40'. Execution of the
instruction:

SR 4

causes the accumulator to contain H'08’,

In both examples the result is non-zero, so ZERQ = 0.

The most significant bit of the results is zero, so SIGN = 1.
The overflow and carry bits are unconditionally reset, so OVF
and CARRY = 0.

Also see Sections 10.1.2 and 10.3.

6.40 ST - STORE TO MEMORY

The centents of the accumulator are stored in the memory
location addressed by the Data Counter (DCO) registers.

The DC registers’ contents are incremented as a result of the
instruction execution.

FORMAT:
[LABEL] ST

STATUS CONDITIONS:

No status bits are modified.

EXAMPLE:

Assume the accumulator centains H'69°, and the DCO reg-
isters contain H'ABBE’. Execution of the instruction ST causes
the memory location H'ABBE’ to contain H'69"; DCO is

incremented to contain H'ABBF’.

See also Sections 7.2.2, 7.3.4 and 7.4.2.

6.41 XDC - EXCHANGE DATA COUNTERS

Execution of the instruction XDC causes the contents of the
auxiliary data counter registers {DC1) to be exchanged with
the contents of the data counter registers (DCO)

This instruction is only significant when a 3852 or 3BE3
Memory Interface device is part of the system configuration.

FORMAT:

[LABEL] XDC

STATUS CONDITIONS:
No status bits are modified.
EXAMPLE:

Assume the data counters, DCO, contain M'ABCD’, and the
auxiliary data counter registars, DC1, contain H'1234’, Ex-
ecution of the instruction XDC causes the DCO registers to
contain H'1234', and the DC1 reagisters to contain H'ABCD",
The PSU’s will have DCO unaltered.

Also see Sections 7.2.2, 7.4.2 and 7.6.1.

6.42 Xl - EXCLUSIVE-OR IMMEDIATE

The contents of the 8-bit value provided by the operand of
the Xl instruction are EXCLUSIVE-ORed with the contants of
the accumulator. The results are stored in the accumulator.

FORMAT:

[LABEL] XI Nvalg8

Nval8 is defined in Table §-1.
STATUS CONDITIONS:
Statuses modified: ZERO, SIGN
Statuses reset: OVF, CARRY

Statuses unaffected; ICB

EXAMPLE:

Assume the accumulator contains H’AB’, and the operand of
the XI instruction contains H’42’, Execution of the instruction:
Xl H'42'

causes the accumulator to contain H'88',

Bit No: 76543210
H'AR’ 10101011
H'42' 00100010
H'89’ 10001001

The result is non-zero, so ZERO = 0.

The high order bit of the results is one, 50 SIGN = 0.

The overflow and carry bit are unconditionally reset, so
OVF = 0 and CARRY = 0.

6.43 XM - EXCLUSIVE-OR FROM MEMORY

The content of the memory location addressed by the DCO
registers is EXCLUSIVE-ORed with the contents of the ac-
cumulator. The results are stored in the accumulator. The
DCO registers are incremented.

6-16

FORMAT:
[LABEL] XM

STATUS CONDITIONS:
Statuses modified: ZERQ, SIGN
Statuses reset: OVF, CARRY
Statuses unaffected: ICB

EXAMPLE:

Assume the DCO counters contain H'1DE4’, the memory lo-
cation addressed by H'1DE4' contains H'1D’, and the accu-
mulator contains H'AB’. Execution of the instruction XM
causes the accumulator to contain H'B5’. DCO is updated to |
H*1DES".

Bit No: 76543210
H1D* 00011101
H'AB’ 10101000
H'B5’ 10110101

The result is non-zero, so ZERO = 0.

The high order bit of the result is one, so SIGN =0, _
The overflow and carry bit are unconditionally reset, 50 |
OVF = 0 and CARRY = 0. ;

6.44 XS - EXCLUSIVE-OR FROM SCRATCHPAD |}

The content of the scratchpad register referenced by the 3
operand (Sreg) is EXCLUSIVE-ORed with the contents of the §
accumulator. 1
FORMAT:
[LABEL] XS Sreg

Sreg is defined in Table 6-2.
STATUS CONDITIONS:
Statuses modified: ZERO, SIGN
Statuses reset: OVF, CARRY
Statuses unaffected: |ICB
EXAMPLE:

Assume the scratchpad register 10 contains H7C’, and the]
accumulator contains H'61°. Execution of the instruction:
xXs 10

causes the accumulator to contain H'1D”.

Bit No. 76543210
H7C’ 01111100
H'61’ 01100001
H1D* 00011101

The result is non-zero, so ZERQ = 0.
The high order bit of the results is zero, so SIGN = 1. .
Overflow and carry bits are reset, so OVF = 0 and CARRY =0,

Also see Section 7.1.1 and 7.6.2.

PROGRAMMING TECHNIQUES

This section describes some basic programming techniques
that will be ussful in almost any F8 application.

NOTE: For easy reading, instructions in examples have labels
which are repeated from one example to the next
it is important to understand that in a real program
no label can be used more than once.

7.1 MANIJPULATING DATAINTHE SCRATCHPAD

The Central Processing Unit's 64 byte scratchpad memory is
the principle storage for data and addresses that are currently
being accessed by the CPU. Table 7-1 illustrates the scratch-
pad memory. Notice that since the ISAR register is divided
inte twe 3-bit units, octal numbers are the best suited to
scratchpad addressing.

Scratchpad registers O through 8 are nine general purpose
registers that should be used to store transient data (or
addresses) currently being accessed,

Scraichpad registers 9 through 15 are used as temporary
depositories for address and status register contents (DCO,
PCO, PC1 and W). Special instructions move data between
these scratchpad registers and their associated status or
address registers,

Registers 16 through 63 are addressed via the ISAR register,
and may be visualized as six, 8-byte buffers. The ISAR register
can, of course, address any of the 64 scratchpad registers;
however, usually only scratchpad registers 18 through 63
{G'20" through Q'77') are accessed via the address in ISAR.

8YTE NUMBER
Octal | Decimal

FUNCTION

0-10| 0-8 [Nine genaral purpose scratch registers
n 9 Temporary storage for status register

12,13| 10,11 |HU and HL; temporary storage for the
Data Counter registers (DCO)

4,16 | 12,13 |KU and KL; temporary storage for the
stack register (PC1)

16,17 | 14,15 |QU and QL; temporary storage for
Program Counter (PCO) or Data Counter
Registers

20- 27| 16 - 23 |First data buffer. ISAR = 0*2X".
30-37| 24 - 31 | Second data buffer. ISAR = Q°3X',
40 - 47| 32 - 38 | Third data buffer. ISAR = Q'4X’.
50 - 57| 40 - 47 | Fourth data buffer. ISAR = O'5X".
60 - 67) 48 - 55 | Fifth data buffer. ISAR = O"6X".
10 -77| 66 - 63 | Sixth data buffer. ISAR = O"7X".

Xis any octal digit (O through 7).

Table 7-1. S$cratchpad Memaory Utilization

7.1.1 Simple Scratchpad Buffer Operations

Because of the way ISAR operates, registers 16 through 63
conveniently form six buffers, each capable of storing eight
bytes. As described in Section 2.1, the ISAR is a 6-bit reg-
ister, divided into 3-bit digits. When I1SAR contents are in-

cremented or decremented, only the lower three bits are
affected; therefore, once ISAR has been loaded with a scratch-
pad address, it will only increment or decrement within an
8-byte address range. The end of any 8-byte buffer may be
identified using the BR7 instruction.

To Hlustrate scratchpad buffer manipulation at its most ele-
mentary level, consider the following instruction sequence,
which sets all eight bytes of a buffer to zero:

ONE CLR
TWO Lisu 2

CLEAR THE ACCUMULATOR
ADDRESS SCRATCHPAD
BUFFER 1

THREE LISL 7
LOOP LR D.A CLEAR SCRATCHPAD BYTE AND
DECREMENT ISAR

FOUR BR7 LOOP RETURN FOR MORE BYTES
Instructions execute as follows:

ONE: Clear the accumulator, so scratchpad bytes may be
cleared by loading O into each byte,

TWO Set the ISAR register to address the first byte
THREE: of scratchpad buffer 1. This address is 027"

LOOP: Load the accumulator content (which is zaro} into
the scratchpad byte addressed by ISAR (initially byte
0'27°). Because ISAR is identified in the operand via
the address D, decrement the low order ISAR actal
digit. {After the first execution of LOOP, ISAR con-
tents are decremented to O'26'; after the secand
execution of LOOP, ISAR contents are decremented
to 0'25', etc.)

FOUR: If ISAR contains 7 as its’ low order octal digit, con-
tinue; otherwise return to LOOP. In this case, con-
tinue if ISAR contains 0’27’ and return if ISAR
contains 020" through 026",

7.1.2 Incrementing Up, and Decrementing Down
Scratchpad Buffers

Now consider a simple variation of the above example; a

7-byte, positive number, stored in buffer 3, is added to an-

other 7-byte, positive number, stored in buffer 4. Binary

addition is performed as follows:;

COoM INITIALLY CLEAR THE

CARRY STATUS

ADDRESS LOW ORDER BYTE
OF EACH BUFFER

ADDRESS FIRST BUFFER
LOAD FIRST BUFFER BYTE
INTO A

ADDRESS SECOND BUFFER
ADD ANY CARRY TO A

SAVE STATUS IN SCRATCHPAD
BYTE 9

ADD SAME BYTE OF SECOND
BUFFER

STORE ANSWER AND INCRE-
MENT BYTE POINTER

XOR CARRY BIT FROM
SCRATCHPAD BYTE 9

ONE LISL O

LOOP LISU 4
TWO LR AS

THREE LISU 5
FOUR LNK

FIVE LR JW
SIX AS s
SEVEN IR LA

EIGHT LR A9

TEN LR J.wW WITH CURRENT CARRY BIT
ELEV XS 9

TWEL (R 9.A

THRT LR w.J

FORT BR7 LOOP RETURN IF NOT END

instructions in the above example execute as follows:
ONE Set the low order octal digit of ISAR to 0. Assume
that numbers are stored in scratchpad buffers as

follows:
47 46 45 44 43 42 41 40

First 1 D A O B A

Buffer

Qctal Addresses
57 b6 55 54 B3 b2 bl 50
secodand 1 1 1T 1T T T 11
Answer Buffer

Least significant byte
Most significant byte
LOOP Set the high order octal digit of ISAR to 4, thus ad-
dressing the next {initially least significant} byte of
the first buffer.

Load the next byte of the first buffer. By using 5 to
identify ISAR as addressing the scratchpad, ISAR is
not changed. This is important. since ISAR must not
be incremented until the sum has been stored in the
second buffer.

THREE By loading 5 into the ISAR high order digit, the cor-
responding byte of the second buffer is addressed.
FOUR Add any carry from the previous byte addition to the
accumulator.

FIWWE Save the status in J {scratchpad register 8).

SiX Add the second buffer byte {same byte number as
first buffer) to the accumulator.

SEVEN Store the sum back into the second buffer, and this
time increment the low order octal digit in ISAR,

after storing the sum.

EIGHT When any previous carry is added to the accumula-
to tor by instruction FOUR, it is possible for 1 to be
THRT added to H'FF’. In this case the carry status would be
setto 1 and the accumulator will be reset to 0. When
the main addition is performed by instruction SIX,
the carry status must be raset to 0, As a result the
carry from FOUR will be lost. The correct carry to be
used in the next byte addition is the OR of any car-
ries from FOUR and SIX; EXCLUSIVE-OR is used
since the two carry statuses cannot both be 1. The
correct carry is created by instructions EIGHT
through THRT, which perform these steps:

EIGHT Move status from FOWUR to the accumulator.

TEN Move status from addition in instruction
SIX to J, register 9 in the scratchpad.
ELEV EXCLUSIVE-OR J and the accurnulator. The

carry status canbe 0 @ 1 =1, 0P 0=0,
1 & 0=1butnever1 O 1=0
TWEL Return status to J.

7-2

THRT Aeturn status to W.
Note: instructions EIGHT to THRT can be simplified by replacing
with BC FORT

LR W, J
FORT If ISAR does not address the last byte of the secend

number buffer, return to LOOP; otherwise continue.
{i.e., return to LOQP if ISAR holds Q'50° through
Q'56"; continue if ISAR holds O'57")

This muttibyte addition #lustrates an important feature of
scratchpad buffer utilization: increment ISAR if the high order
buffer byte has a special significance; decrement otherwise,
For example, as illustrated below numbers may use the high
order buffer byte 1o hold sign, decimal point, or any other
control information:

Most significant byte
Least significant byte

x? xB x5 x4 x3 x2 x1 xO-e—Qctal Address. Xis
—|' | [l J any digit from 2
— ~ through 7.

Numenc value in

these seven bytes
Control byte; not processed in iterative
loop when ISAR is incremented.

Consider now a variation of the multibyte addition, in which
the significance of bytes is reversed:

x?7 x6 x5 x4 x3 x2 x1 x0-=—Qctal Address. X is

1 I 1 1 1 1 | aw digit from 2

through 7.

‘ T———Most significant byte
Least significant byte

By starting ISAR at x7, all eight bytes of the buffer will be :
processed identically, since ISAR will be decremented to %
before the first execution of BR7. Thus the loop wilt be exe-
cuted seven times, until ISAR decrements from x0 back tox7.
Program steps are as follows:

com INITIALLY CLEAR THE CARRY

STATUS

ONE LSL 7 ADDRESS LOW ORDER BYTE
OF EACH BUFFER

LOOP LISU 4 ADDRESS FIRST BUFFER

TWO LR AS LOAD FIRST BUFFER BYTE
INTO A

THREE LISU 5 ADDRESS SECOND BUFFER

FOUR LNK ADD ANY CARRY TO A

FIVE LR JW SAVE STATUS IN SCRATCHPAD |
BYTE 9 "

SIX AS S ADD SAME BYTE OF SECOND
BUFFER i_

SEVEN LR DA STORE ANSWER AND DECRE- |
MENT BYTE POINTER

EIGHT LR A9 OR CARRY BIT FROM SCRATCH- :
PAD BYTE 9

TEN LR W WITH CURRENT CARRY BIT

ELEV XS 9

TWEL LR 9A

THRT LR WJ s

FORT BR7 LOOP RETURN IF ISAR DID NOT DE- 1

CREMENT FROM 0’50 to 0’57

Another variation of the same incremanting scratchpad ad-
dition is shown below. It takes advantage of the fact that the
SUM is overstoring the second data buffer. If the result of
the LNK instruction produces a carry the resulis in the aec-
cumulator must be zero; therefore, the sum is already correct
and the following addition is needless. The carry bit logic is
therefore simplified. This routine is only valid if the sum
overstores one of the buffers.

coM

ONE LisL 0

LgoP LUsu 4

T™WO LR AS

THREE LiSU b

FOUR LNK
BC CKENK

SIX AS S

SEVEN LR S5.A

CKEND LR Al DUMMY INSTRUCTION TO INC

ISAR

BR7 LOOP

By changing:ONE LISL OtcONE LISL7
and: CKEND LR Alto CKEND LR AD

The ISAR will be decrementing during the addition.

7.1.3 Using Scratchpad Registers as Counters

Scratchpad bytes O through 8 should be used for counters
and pointers, and for short data operaticns that do not require
data buffers.

Consider the simple use of a scratchpad byte as a counter.
If an instruction sequence is to be executed some number of
times betweaen 1 and 256, proceed as follows:

ONE LI COUNT LOAD COUNT INTO

ACCUMULATOR

WO LR 0A MOVE TO SCRATCHPAD
REGISTER O

Locp — — START OF INSTRUCTION SE-

QUENCE TO BE RE-EXECUTED

TEST DS 0 DECREMENT COUNTER
BNZ LOOP RETURN IF COUNTER IS NOT O

COUNT is a symbol which must be equated to a numeric con-
stant between 0 and 255. A value of O will cause 258 returns
to LOQP, since TEST will decrement the counter to 255 on
the first pass.

fiote that scratchpad register O has been arbitrarily selected
as the counter; any other register, up to register B, could have
been used.

7.1.4 Using Scratchpad Registers for Short Data
Operations

Data operations that involve 4-byte [or smaller) data units
are handled out of the first nine scratchpad registers.

Consider the addition of 186-bit signed binary numbers, As-
sume that the augend is stored in scratchpad registers O and

1 {1 most significant), and the addend is stored in scratchpad
registers 2 and 3 {3 most significant). The resuh is to be re-
turned in registers 2 and 3. Bit 7 of registers 1 and 3 holds the
sign of the augend and addend, respectively. The addition pro-
gram proceeds, directly accessing scratchpad registers:

ONE LR A0 LOAD LOW ORDER AUGEND
BYTE

TWO AS 2 ADD ADDEND LOW ORDER
BYTE

THREE LR 2A SAVE THE RESULT

FOUR LR At LOAD THE HIGH ORDER
AUGEND BYTE

FIVE LNK ADD ANY CARRY FROM LOW

ORDER BYTE ADD
SIX BNQ EIGHT IF THERE IS AN OVERFLOW,
SEVN BR ERROR THE RESULT IS TOO LARGE.
MAKE AN ERROR EXIT

EIGHT AS 3 ADD THE HIGH ORDER
ADDEND BYTE

NINE LR 3A SAVE THE RESULT

TEN BNO OK NO OVERFLOW, CONTINUE

ELEV ER ERROR OVERFLOW, THE RESULT IS IN
ERROR

The program executes as follows:
ONE Load the low order augend byte into the accumutator,
T™WQ add the low order addend byte and save the result.

THREE Carry is the only meaningful status after this addition.
If the carry is set, it means that 1 must be added to
the high order byte result.

FOUR Load the high order augend byte and add any carry
to it.

FIVE Now the overflow status is important, since it iden-
tifies a earry out of bit B, the highest arder data bit.
{See Appendix A for clarification.)

SIX if the overflow status is set, branch out to an error
SEVN handling program. If the overflow status is not set,
continue. Only the overflow status need be tested.

f two positive numbers are being added, the impor-
tant carry is out of bit 6, and there can be no carry
out of bit 7, which must be O for both numbers.

If a positive and a negative number are being added,
there can be no overflow.

If two negative numbers ars being added, there must
be a carry, since both 7 bits are 1. i there is no
carry out of bit 8, an erraneous positive result is
indicated, and the overflow bit is set.

EIGHT Add the high order addend byte and store the result.
NINE

TEN Repeat of instruction S1X. OK is presumad to be the
label of the instruction at which normal execution
continues.

7-3

7.2 ROM, RAM AND DATA TABLES

There are two circumstances under which ROM and RAM
memory cutside the 3850 CPU scratchpad will be referenced
to access data:

1) In large or small F8 systems, data tables may be stored
in ROM.

2} In large F8 systems, data will be stored and retrieved
out of RAM, via 3852 or 3853 interface devices; this
allows large amounts of data to be stored and
processed.

7.2.1 Reading Data Out of Tables in ROM

Various types of “table lockup™ applications make extensive
use of data tables stored in ROM, which will usually be a
3851 PSU device. There are two types of table lookup
application, the sequential access and the random access.

Consider first text generation as an example of sequential
access. Messages are stored, as ASCIl character sequences,
in ROM. The following instruction sequence outputs a message
via the 3850 CPU 1/0Q port O:

ORG H'0600°
MSG1 DC C'PO’
DC cuL’
DC CTR’
oc cyy
M5G2 DC C'FI’
DC C'SH’
Dc C'By’
ORG H'0400Q°
ONE LI {MS5G2-MSG1) LOAD BUFFER LENGTH
TWO LR 0.A SAVE IN SCRATCH
REGISTER O
THREE DCI MSG1 LOAD STARTING BUFFER
ADDRESS INTO DCO
FOUR CLR iNITIALIZE PORT O
QuTs ©
INS © TEST FOR READY TO
RECEIVE DATA
FIVE BP FOUR ASSUME 1 IN BIT 7
WHEN READY
SIX LM LOAD NEXT CHARACTER
SEVEN OQUTS O OUTPUT CHARACTER
EIGHT DS 0 DECREMENT CHARACTER
COUNTER
NINE BNZ FOQUR RETURN FOR MORE
CHARACTERS

It is arbitrarily assumed that the eight ASCIl characters
'POULTRYH" are stored in ROM, starting at memory location
H'06C0"; the program to cutput this character string starts at
memory location H'0400°. The program proceeds as follows:

ONE
™WO

The message length is computed by subtracting the
symbol MSG1, which equals the starting address
of ‘POULTRYHK’, from the symbol MSG2, which
equals the starting address of the next message,
‘FISHE'. This message length is stored in scratchpad
register Q.

7-4

THREE The selected message starting address {provided by

the symbol MSG1} is loaded into the DCO registers.

FOUR
FIVE

These two instructions provide one of many ways in
which programmed 1/0 may be set up. It is assumed
that the receiving device connected to1/0 port O has
an 1/0 buffér containing all zeros until it is ready to
receive data, at which time bit 7 of the 1/0 buffer is
set to 1. The 10 buffer contents are continuously
checked until bit 7 (the sign bit) is sensed as a 1 bit.
The port is cleared prior to input when used for input
and output. For details see Section 8.2.

SIX The contents of the ROM byte addressed hy the DCO
registers is tnput to the accumutator; the DCO reg-
isters contents are then incremented.

SEVEN The accumulator contents are output to 1/0 port 0.
EIGHT
NINE

The buffer length counter {in scratchpad byte 0} is
decremented. If the result is not zero, return to
instruction FOUR to process the next character.

Improved text writing programs are given in Section 10.2,

7.2.2 Accessing Data Tables in RAM

Two programming techniques need to be understood in
connection with accessing RAM via 23852 or 3853 interface
devices:

a) Processing data between a source buffer and a
destination buffer.

b} Operating on data from two source buffers to create
results that are stored in a destination buffer.

Consider first the example of data being moved from one
RAM huffer to another. This procedure is very simple on the
F8, requiring the following instruction sequence:

BUFA EQL H'2000 BUFFER ADDRESSES AND

BUFB EQU H3080 LENGTH HAVE BEEN ARBI-
TRARILY SELECTED

CTHI EQU HD2’ CTHI AND CTLO TOGETHER

CTLO EQU HBO FORM A TWO BYTE BUFFER

— LENGTH COUNTER

ONE LE CTHI USE SCRATCHPAD REG-

T™WO LR 1.A ISTERS O AND 1 FOR THE
BUFFER LENGTH

THREE LI CTLO

FOUR LR 0.A

FIVE DCI BUFB LOAD DESTINATION
ADDRESS INTO DCO

SIX XDC SAVE IN DC1

SEVEN DCI BUFA LOAD SOURCE ADDRESS
INTO DCO

LooP LM LOAD SOURCE BYTE

EIGHT XDC EXCHANGE ADDRESSES

NINE ST STORE IN DESTINATION
BUFFER

TEN XDC EXCHANGE ADDRESSES

ELEV DS 0 DECREMENT LOW ORDER
COUNTER BYTE

TWEL BNZ LOOP RETURN IF NOT ZERO

THRT DS 1 DECREMENT H.O.

COUNTER BYTE AND TESTIF

o

H
i
i
¥
h
&

FRTN

ONE
to
FOUR

FIVE
SiX

SEVEN

LOOP

EIGHT

NINE

TEN

ELEV
to
FRTH

ITWAS O
RETURN IF H.Q. BYTE WAS
NOT O

BC LOOP

This program makes no assumptions regarding data buffer
size or location. Decrementing 2-byte counters is illustrated
in this program, enabling data to be moved between buffers
of any size. Program steps proceed as follows:

The two byte buffer length is loaded into scratchpad
registers 1 (high order byte) and O {low order byts).
Notice that the 2-byte count must be loaded as two
single byte quantities, since the LI instruction loads
a single data byte into the accumulator.

Save the destination buffer starting address in DC1.
First the address must be loaded into RDCO using a
DCI instruction, then it is transferred to DC1 by the
XDC instruction. Note that the DCI instruction has
a 2-byte operand, therefore BUFA {and BUFB} are
equated as 2-byte addresses.

Load the source buffer starting address into DCO.
{The destination buffer starting address is now
in BC1.)

Transfer the contents of the memory byte addressed
by the DCO registers to the accumulator. The ad-
dress in the DCO registers is automatically incre-
mented and now points to the next byte of the
source buffer.

Exchange addresses between the DCO and DC1
registers. The DCO registers now address the
destination buffer.

Store the contents of the accemulator in the memory
byte addressed by the DCO registers. This is now
the next destination buffer byte following the pre-
vious XDC instruction. After the data byte is stored
in the destination buffer the address in the DCO
registers is automatically incremented to address
the next destination buffer byte.

Exchange the contents of the DCO and DC1 registers
so that the DCO registers again address the next
source buffer byte.

The two byte counters CTHI and CTLO, stored in
scratchpad registers 1 and Q, respectively, are dec-
remenied to zero. Until they decrement to zero,
execution returns to LOOP. After they decrement
to zero, execution continues at the instruction
following FRTN.

Decrement logic proceeds as follows: the low order
counter byte is decremented until it reaches zero. At
this point the high order counter byte is decremented
and simultaneously tested to see if it was decre-
mented from 0. Since the DS instruction, in fact,
adds H'FF’ to the contents of the scratchpad byte,
the carry status will be set unless H'FF’ was addad
1o H'0Q'. Therefore after executing a DS instruction,
it is possible to test for a “decrement-from-zerg”
using the BC instruction. A branch-on-negative
{BM) instruction would serve as well.

75

Consider the current case. Initially CTLO in scratch-
pad register O is decremented frem H'80" to D. At
this point, CTHI in scratchpad register 1 contains
2 and there are 512 bytes of data remaining to be
moved. The low order byte of the counter is again
decremented from H’FF’ through to 0, at which paint
CTHI in scratchpad register 1 contains 1, signifying
that 266 bytes of data still remain to be moved.
Now the high order byte of the counter in scratch-
pad register 1 is decremented from 1 to 0. Again
the low order byte of the counter in scratchpad reg-
ister O is decremented from H'FF’ through to Q. This
time no bytes remain to be moved; when the high
order byte of the counter in register 1 is tested, it
is found to be negative. As required, execution of
the loop ceases and the branch pccurs to instruction
QUT, somewhere beyond the program.

Consider next a three buffer example; two positive, multi-
byte numbers are to be added and the sum is to be stored
in a third multibyte buffer. This three buffer addition proceeds

as follows:
BUFA EQU H'OB38' THE CONTENTS OF BUFA
BUFB EQU H'O920° AND BUFB ARE ADDED.
BUFC EQU HO77C THE RESULT 1S STORED
IN BUFC.
CNT — H'OA’ 10 BYTE BUFFERS ARE
— ASSUMED.
ONE LIS CNT USE SCRATCHPAD
TWQO LR 0,A REGISTER 0 AS A COUNTER
THREE DCI BUFC SAVE THE ANSWER IN BUF-
FOUR LR a.bC FER STARTING ADDRESS
INQ
FIVE DCl BUFA SAVE THE SOURCE BUFFER
ADDRESSES
SIX XDC IN DCO AND DC1
SEVEN DCI BUFB
EIGHT COM INITIALLY CLEAR THE
CARRY BIT
LR JW INITIALIZE STATUS
LOOP LM LOAD NEXT BYTE
LR W.J MOVE CARRY FROM
PRIOR ADD TO STATUS
NINE LNK ADD ANY PREVIOUS
CARRY
TEN LR Jw SAVE STATUS IN J
ELEV XDC ADDRESS ADDEND BUFFER
TWEL AM ADD CORRESPONDING
ADDEND BYTE
THRT XDC READDRESS AUGEND
BUFFER
FRTN LR H.DC SAVE AUGEND ADDRESS
INH
FFTN LR DC.Q LOAD ANSWER BUFFER
ADDRESS
SXTN ST STORE THE ANSWER
SVTN LR Q.DC SAVE ANSWER BUFFER
ADDRESS IN Q
EGTN LR DCH MOVE AUGEND ADDRESS
BACK TO H
NNTN BNC TWT1 NO CARRY FROM AM
INSTRUCTION
TWTY LR Jw SAVE CARRY FROM AM
INSTRUCTION

TWT1

DS
BNZ

0
LOOP

DECREMENT COUNTER
RETURN FOR MORE

This program executes as follows:

ONE Scratchpad register O is used as a counter. Buffer
TWO length has arbitrarily been assumed to be ten bytes.
THREE Since three 16-bit addresses have to be maintained,
to the following scheme will be used. At any time the
SEVEN buffer being accessed must have its address in DCO;
however, DC1 plus the O and H registers in the
scratchpad memory are available to store addresses
which are out of servica. Accordingly, the answer
buffer address will be saved in Q, the addend buffer
address will be saved in DC1 and the augend buffer
address will be saved in H whenever the answer
buffer address is maved from Q to DCO. This scheme
is illustrated in Figure 7-1.
SCRATCHPAD
THAT
AL b }Vﬂ ~-~—b
11 b B
h
s‘;vy Dco ELEV Det
14 h—>
Q c } A
15 ¢ -
16
& = ADDEND ADDRESS [BUFA)
b = AUGEND ADDRESS (BUFB)
¢ = ANSWER ADDRESS [(BUFC)

Fig. 7-1.

EIGHT

LOOP

NINE

TEN

Use of H, Q and DC1 Registers to Hold Three Buffer
Addresses

initially, it is necessary to load the answer buffer
starting address into the Q registers, the addend buf-
fer starting address into DC1 and the augend buffer
address into DCO.

The carry status must initially be set to O before the
first two bytes are added. This is done by comple-
menting whatever happens to be in the accumulator,
since the complement instruction automatically sets
the carry status to 0.

Load the next augend byte. The augend byte address
is initially loaded into DCO and is returned to DCO
at the end of the addition loop. After the augend
byte has been |loaded into the accumulator, DCO
contents are automatically incremented.

Add any carry from the previous byte addition to the
augend byte in the accumulator. {Instruction EIGHT
will have set the carry to O before the first two bytes
are added.}

As described in Section 7.1.2, addition logic must
take account of the fact that when the link is added
to the accumulator it is possible for the accumulator
to contain H'FF’ and the link to contain 1. In this
case the result will be zero in the accumulator with
1 in the carry status. Subsequent addition of the
addend byte will destroy the carry status. Instruction

7-6

TEN therefore saves the status register in the scraich-
pad J register {register number 3).

ELEV
to
THRT

These three instructions switch the contents of the
DCO and DC1 registers (DCO will now address the
augend buffer). The contents of the next augend byte
are added to the accumutator using binary addition.
The augend buffer address in DCQ is automatically
incremented after performing the addition. Then the
augend and addend addresses are exchanged so that
after instruction THRT has been executed, DCO ad-
dresses the next addend byte and DC1 addresses
the next augend byte.

FRTN
to
EGTN

The sum in the accumulator must now be saved in
the next answer buffer byte. The answer buffer ad-
dress is in the scratchpad (registers (registers 14
and 15). Before moving the answer buffer address to
the DCO registers, the DCO registers contents are
saved in the scratchpad H registers (registers 10
and 11). Instruction SXTN stores the answer byte in
the accumulator into the answer buffer, then incre-
ments the answer buffer address in the DCO registers.
Instruction SVTN saves the incremented answer buf-
fer address back in the Q registers while instruction
EGTN restores the augend address from the H
register to the DCO registers.

NNTN Observe that instructions FRTN through EGTN do
nat modify any of the status bits. As described in
Section 7.1.2, the correct carry status to be used
when adding the next two bytes is given by ORing
the carry staius from instructions NINE and TWEL
If instruction TWEL created a O carry, then the carry
saved by TEN is valid, If instruction TWEL created a
1 carry, it must be saved {by TWTY), to be recalled
following LOOP. Since DS in TWT1 resets the carry
to O, it is necessary to save the carry status in 9,
across the DS instruction. Note the difference in
technique for preserving the carry status in this
example, where DS resets the carry, as compared
to Section 7.1.2, where statuses are not destroysd.
TWT1 The buffer length counter in scratchpad register 0
is now decremented. If it does not decrement to
zerg return to LOOP to add the next two bytes of
the buffer.

7.3 SUBROUTINES

7.3.1 The Concept of a Subroutine

Any logic that will be used more than once can be written
as a subroutine. For example, the 16-bit, signed binary ad-
dition program given in Section 7.1.4 may be needed at a
number of different points within one large program. The
routine may be repeated wherever it is needed. For example,
the sleven instructions of the 18-bit signed binary addition
routine may re-appear ten times within a program that uses
this logic ten times. When the code is reproduced, without
modification, it is wasting memory.

There are two ways in which an often used routine may be
accessed by a program:

1} The code can be reproduced with minor modifications,
in which case it is treated as a Macro, as described
in Section 7.4.

o aw

2) The routine may be stored once, then accessed for
execution each time it is needed. The routine is now
called as a subroutine,

Figure 7-2 illustrates the concept of a subroutine.

There are four aspects of subroutines that mustbe considered;
they are:

1) The program steps of the logic being bundled as a
subroutine.

2} How the subroutine is accessed. (This is termed
“calling” the subroutine.}

3) Returning from the subroutine after it has executed.

4} Passing data, as parameters, to the subroutine.

Each aspect of a subroutine will be examined with reference
1o the multibyte addition routine described in Section 7.2.2.

(A} ROUTINE “5” IS PACKAGED AS A MACRO, AND
REAPPEARS EACH TIME ITS LOGIC 1S REQUIRED.

/ A\‘N\\\
///ll J'l\\
/! 1\1 Ny
'y VN
f/// 1 \\1 N
4 YN
a ! -] el d LS

{B] ROUTINE g APPEARS ONCE. EXECUTION LOGIC
(REPRESENTED BY ----- = | BRANCHES TO THE
BEGINNING OF "5, THEN RETURNS, FROM THE
END OF s, TO THE BRANCH POINT.

Fig. 7-2. Subroutine, as Compared to a Macro

7.3.2 Subroutine Program Steps

The instructions that implement any logic are the same within,
or outside of, a subroutine. Compare the 16-bit addition pro-
gram (AD16) in Section 7.3.3 with the equivalent program
in Section 7.2.1; the only changes relate to entry and exit
procedures.

7.3.3 Simple Subroutine Calls and Returns

As described in Sections 6.35 and 6.36, there are two
instructions used to call a subroutine into execution.

Instruction PK saves the contants of the program counter
{PCQ} in the stack register (PC1), then loads the subroutine
starting address from the K register (scratchpad registers
12 and 13} into the program counter.

Instruction PI saves the contents of the program counter in
the stack register; it then loads the subroutine starting ad-
dress {which is in the two object program bytes following
the Pl op code byte} into tha program counter.

For straightforward returns from subroutines, the POP in-
struction, described in Section 6.37, moves the contents of

the stack register back ta PCO, thus effecting a return from
a subroutine.

PK may also be used to return from a subroutine by having
the return address in the K ragisters. LR P0,Q likewise may
be used to return by having the return address in the Q
register.

The starting address of a subroutine is identified by the sub-
routine name, which is the label of the first instruction to be
executed in the subroutine.

Suppose the multibyte addition routine from Saction 7.2.2 is
to be named MADD, while the 16-hit addition routine from
Section 7.1.4 is to be named AD16. These names are created
by changing

ONE LI CNT USE SCRATCHPAD

REGISTER O
to the following equivalent instruction:

MADD LI CNT USE SCRATCHPAD

REGISTER O
For AD16, change

ONE LR LOAD LOW ORDER

AUGEND BYTE

AD

to the following equivalent instruction;

AD16 LR AD LOAD LOW ORDER

AUGEND BYTE

Note that although the first sequential instruction is also the
first executed instruction for MADD and AD16, the first
executed instruction may, in reality, be any instruction within
the subroutine.

The last instruction executed by a subroutine must be POP,
PK or LR P0,Q. Therefore, if for the moment the AD16 error
return is ignored, subroutine AD18 becomes:

AD16 LR A0 FIRST INSTRUCTICN
EXECUTED FOR AD16

W0 AS 2

THREE LR 2.A

FOUR LR Al

FIVE LNK

1) 4 BNO EIGHT

SEVN POP IF THE RESULT IS TOO

LARGE, RETURN
EIGHT AS 3
NINE LR
auT POP RETURN AT END OF

SUBROUTINE

Notice that a subroutine may have more than one exit,

Subroutine MADD becomes:

FIRST INSTRUCTION
EXECUTED FOR MADD

MADD U CNT

TWO LR

0.A

{rest of subroutine as in Section 7.2.2)

DS o

TWT1
BNZ LOOP RETURN FOR MORE
POP RETURN AT END OF

SUBROUTINE

Consider the very simple case of subroutine AD16 being called
using a Pl instruction. Instruction sequences, with arbitrarily
selected memory addresses, might be as follows:

Memory *MAIN PROGRAM SEGMENT
Address —

H102A" ONE Pl AD16
H102D° TWO INC

*SUBROUTINE AD16 STARTS HERE
AD16 LR A0

H2130"

H'213B* OUT POP

Before instruction ONE is executed, PCO contains H'102A"
After instruction ONE has executed, PCQ contains H'2130"
and PC1 contains H'102D'. Execution now proceeds from
AD16, at H'2130".

Before instruction QUT is executed, PCO contains H'213B’
and PC1 still contains H'102D’. Instruction OUT moves
H' 102D to PCO, thus returning executich to TWO,

The following sequence illustrates PK being used to calt AD16,
and Pl being used to call MADD:

*THIS ORIGIN FOR AD16 HAS BEEN ARBITRARILY SELECTED
ORG H'0980°
LR AL

LOAD LOW ORDER
AUGEND BYTE

AD16

{rest of subroutine follows here)

7-8

*THIS ORIGIN FOR MADD HAS BEEN ARBITRARILY SELECTED
ORG H'O9EC
MADD LI CNT

USE SCRATCHPAD
REGISTER O

{rest of subroutine follows here}

*THIS ORIGIN FOR THE MAIN PROGRAM HAS BEEN
*ARBITRARILY SELECTED
ORG H"1000
*BEFORE SUBROUTINE AD16 IS FIRST CALLED, LOAD
*|ITS STARTING ADDRESS INTQ THE SCRATCHPAD K
REGISTERS

ONE LI H'09’ LOAD STARTING ADDRESS
TWO LR KU.A OF SUBROUTINE AD16INTO
THREE LI H'80° K REGISTER
LR KLA
FOUR PK FIRST CALL TO SUBROUTINE
— AD16
FIVE Pl MADD FIRST CALLTO SUBROUTINE
— MADD
SiX PK SECOND CALL TO SUB-
— ROUTINE AD16
SEVEN PK THIRD CALL TO SUB-
— ROUTINE AD16
etc

7.3.4 Nasted Subroutines
“Nesting” is the term applied to subroutines being called
from within other subroutines.

There is no reason why a subroutine should not, itself, call '
another subroutine. In fact, subroutines are such efficient
programming tools, that it is not uncommen to find subroutines
nested eight deep, or more, in large programs.

Consider a very simple case, where creation of the correct
carry status for multibyte addition is packaged into a sub-
routine named CBIT. This subroutine is equivalent to instruc-
tions EIGHT through THRT of the addition program in Section
7.1.2.

Subroutine CBIT appears as folows:

CBIT LR A9 MOVE STATUS FROM LNK

ADDITION TO A

LR JW MOVE STATUS FROM BYTE
ADD TO W

Xs 8 EXCLUSIVE-OR STATUSES

LR 9A RETURN STATUS TO JVIAW

LR WJ

POP

"

First try changing the addition program in Section 7.1.2 as
follows:

MADE COM INITIALLY CLEAR THE
CARRY STATUS

ONE Lisy 7 ADDRESS LOW ORDER
BYTE OF EACH BUFFER

LOOP LUSU 4 ADDRESS FIRST BUFFER

TWo LR AS LOAD FIRST BUFFER BYTE
INTO A

THREE LISU &5 ADDRESS SECOND BUFFER

FOUR LNK ADD ANY CARRY TO A

FVE LR JW SAVE STATUS IN SCRATCH-
PAD BYTE 9

SIX AS S ADD SAME BYTE OF
SECOND BUFFER

SEVEN LR D.A STORE ANSWER AND INC-
REMENT BYTE POINTER

EIGHT PI CBIT CALL C STATUS SUB-
ROUTINE

FORT BR7 LOOP RETURN IF NOT END

FIFT POP RETURN FROM SUB-

ROUTINE

The addition routine has been converted into a subroutine
named MADS.

When subroutine MADS is called, the return address is stored
in PC1 to be returned to PCO by POP instruction FIFT. Un-
fortunately, when CBIT is called at EIGHT, the Pl instruction
will also store a return address, the address of instruction
FORT, in PC1. The POP at FIFT will no longer work, since it
will branch execution back to FORT, thus forming an endless
execution loop. {This type of program error is handled by the
MAXCPU directive.)

When subroutines are nested one deep, (and this is often
sufficient in simple F8 applications), the K registers in the
scratchpad can be used to overcorne the problem of wiping
out PC1. For example, in Subroutine MADD, save PC1 in
K upon entering MADS then use PK to return from MADD:

MADS LR K.P SAVE RETURN ADDRESS
COM INITIALLY CLEAR THE
CARRY STATUS
EIGHT PI cBIT CALL C STATUS SUB-
ROUTINE
FORT BR7 LOOP RETURN IF NOT END
FIFT PK RETURN FROM SUB-

ROUTINE FOR END

When subroutines are nested more than two deep, a stack
iscreated in RAM to hold subroutine return addresses. When
creating such a memory stack, it is wise to use PC1 and K as
address conduits to the stack, never actuaily retaining address
permanently in PC1 or K,

Consider the following simple, three-desp subroutine nest:

Arbitrary
Memory
Addresses
*MAIN PROGRAM

H'C8B0A’ ONE PJ suB1 CALL FIRST SUBROUTINE
H'080D" NXT1 — FIRST SUBROUTINE

- RETURNS HERE

ORG H"2073

*START OF FIRST SUBROUTINE

H2073" SUB1 — FIRST INSTRUCTION OF
— SUB1
H'2082° TWO PI sSuB2 CALL TO SECOND SUB-
ROUTINE
H'2085" NXT2 — SECOND SUBROQUTINE
— RETURNS HERE
H’2132° RET1 POP RETURN TC MAIN

PROGRAM

*START OF SECOND SUBROUTINE

ORG H"'12a4
H'12A4’ SUB2 — FIRST INSTRUCTION OF
— suB2
H'1283° THRE PI SUB3 CALL TO THIRD SUB
H'12B6" NXR3 — THIRD SUBRQUTINE
— RETURNS HERE
H'12E2" RET2 POP RETURN TO FIRST
— SUBROUTINE
*START OF THIRD SUBROUTINE
ORG H'1558’
H'1658" SUB3 — FIRST INSTRUCTION OF
— SUB3
H'1596" RET3 POP RETURN TO SECOND

SUBROUTINE

The sequence in which instructions are executed is given in
Table 7-2, along with contenis of PCO, PC1, and a “stack”
in memory, where PC1 contents may be stored.

Notice that the first return address, H’080D", is passed to SO,
the first two bytes of the memory stack. Similarly the sec-
ond {H'2085) and third (H"12B6‘) return addresses are stored
in the second and third byte pairs of memaory stack. At all
times, data in PC1 and K are merely the accidental result of
logic needed to pass return addresses to the stack.

A memory stack “pointer” must be maintained. After each
return address is stored in the stack, the stack pointer will
identify the next free stack byte,

Raturn logic is the opposite of subroutine call logic. Before
each call, the most recently stored return address {in the
two stack bytes right behind the stack pointer} are moved to
PC1, and the stack pointer address is decremented by 2.

The memory stack may either be in scratchpad memory, ar
in RAM memory,

- REGISTERS /STACK CONTENTS
INSTRUCTION| prg PC1 K First six bytas of Memory Stack
LABEL 1] 50 s 52
DBOA ? 7 ? 7 ? lat— - — Befora
ONE 2073 | OBCD ? ? ? ? lt—— After
SUB1 2073 | 0BOD 7 ? ! ? l—— Before
2082 | 080D | 080D | 080D ? ? |¢———— Before
TWO 12A4 | 2085 | 0BOD | 0BOD 7 7 hett——— After
. 5UB2 12A4 | 2085 | 080D | G8BOD ? I Lt —— Refore
12B3 | 2085 | 2085 | 080D | 2085 ? ——Before
THRE 1558 | 12B6 | 2085 | OBOD | 2085 ? po——— After b
SUB3 1568 { 1286 | 2085 | 0800 | 2085 ? ta———— Bofore
1536 | 12B6 | 1286 | 080D | 2085 1286 L+ Before
RET3 1286 | 1286 | 1286 | 080D | 2085 12B6 s After
NXT3 12B6 | 12B6 | 1286 | 08BOD | 2085 12B6 |-=—— Bafare
12E2 | 2085 | 2085 | 0OBOD | 2085 12BE6 re——— Before
RET2 2085 | 2085 | 2085 | 08OD | 2085 1286 . After
NXT2 2086 | 2085 | 2085 | 080D | 2085 12B6 _|-+——— Before
2132 | 0OBOD | OBDD | 080D | 2085 12B6 |—— Before
RET1 DBOD | 080D | 0BOD | OBOD | 2085 12B6 [After
— —
L— Instructions are in order of execution
Table 7-2. Use of a Memory Stack for Executing Multipie Level Subroutines
Consider first a stack in scratchpad memory. By assigning MADD LR K.P SAVE RETURN ADDRESS
one B-byte buffer to serve as a memory stack, subroutines IN K
may be nested four deep. One byte at the beginning of P CALL SAVE RETURN ADDRESS
scratchpad memory will serve as the stack pointer. IN STACK
ONE LIS CNT USE SCRATCHPAD
REG!STER O
Subroutine CALL, described next, uses scratchpad bytes 077’ TWO LR 0.A AS A COUNTER

to 0’'70" as the memory stack, as illustrated in Figure 7-3.
Scratchpad byte 8 is the stack pointer which mustbe initialized
to H'77.

BYTE SCRATCHPAD
NO. STACK / BEGINNING OF STACK
o7y H1

FIRST AETURN ADDRESS
076’ L1
075 H2

SECOND RETURN ADDRESS
o074 L2
073 H3

THIRD RETURN ADDRESS
72 L3
o7 H4

FOURTH RETURN ADDRESS
070 L4

\ END OF STACK

SUBROUTINE CALL LOAD ADDRESSES INTO THIS STACK
SUBRQUTINE RTRN FETCH ADDRESSES QUT OF THIS STACK

Fig. 7-3. Scratchpad Stack

Every subroutine must begin by saving PC1 contents in K,
then calling CALL. This is illustrated as follows for subroutine
MADD. which is the addition program from Section 7.2.2,
converted into a subroutine:

7-10

Since the call to CALL is preceded by PC1 contents being
saved in K, PC1 is now free to hold the return address for
CALL. Subroutine CALL has the following instructions:

CALL LR A8 MOVE THE STACK POINTER
TO ISAR

C1 LR IS.A

cz Cl o'67 CHECK FOR STACK
OVERFLOW

c3 BZ SFUL STACK HAS OVERFLOWED.
MAKE ERROR EXIT.

Cc5 LR AKU MOVE KU TOQ STACK

ce LR DA

c? LR AKL MOVE KL TO STACK

ce LR S.A DO NOT DECREMENT ISAR

cs LR AlS SAVE ISAR IN SCRATCH-
PAD BYTE 8

ct0 LR 8A

c1n DS 8 DECREMENT VALUE SAVED
FOR ISAR

POP RETURN

ci12

The addrass of the next free stack byte is held in scratchpad
byte 8. If this address is Q’67', it means that 0'70" is the

address of the last filled stack byte and the stack is full.
Therefore when CALL is called, the stack address is tested
for overflow by checking ISAR. A value of 0’67’ indicates the
stack has overflowed. A value of 0’77 indicates the stack
is empty.

Subroutine CALL logi¢c proceeds as follows:

CALL Move the stack address from scratchpad byte 8 to
ISAR

c1

c2 Test stack address for Q'67".

C3 It is assumed that SFUL is the label of an instruction
which will handle stack full errors in any way re-
guired by program logic. This instruction branches
exacution to the instruction labeled SFUL.

Ccs Move the contents of the K registers to the next two

to free bytes of the stack. The ISAR is only decremented

c8 once. The second decrement can be performed in
tha scratchpad, where 0’70’ wilf decrement to 0’67’
which is indicates stack full, rather than to O'77
which would erronecusly indicate stack empty.

co Return the new contents of ISAR to scratchpad
register A.

Cc10

ci1 Decrement ISAR in scratchpad so that O'70" will
decrement to Q'67' which is full, not to O'77’, which
is empty.

c12 Return from subroutine CALL.

A subroutine that uses CALL to save its return address on
the stack will use another subroutine, named RTRN, to re-
turn to the calling program. For example, subroutine MADD
will now end with;

TWT2

Pl RTRN

Since RTRN resets PCO, Pl may be replaced with;

TWT2 JMP RTRN

Subroutine RTRN takes the address most recently stored in
the stack and moves this address to PCO, effecting the desired
return, as follows:

RTRN LR A8 MOVE THE STACK POINTER
TO ISAR

R1 LR IS,A

LR Al INCREMENT ADDRESS TO

LAST FILLED STACK BYTE

R2 LR Al MOVE THE ADDRESS

R3 LR aL.A IDENTIFIED BY ISAR TO Q

R4 LR A8

R5 LR Qu.A

R6 LR AlS RESTORE ISAR

R7 LR 8.A

R8 LR PO.Q MOVE Q TO PCO

Subroutine RTRN executes as follows:

RTRN Move the stack pointer address from scratchpad

R1 register 8 to ISAR. Increment ISAR to move ad-
dress from the first free stack byte to the last
occupied stack byte.

R2 Move the address identified by ISAR to QL and QU.

to Increment ISAR to point to the prior address. Leave

R5 ISAR addressing what is now the first free byte.

R& Save the new value of {SAR in scratchpad register 8.

R?

R8 The subroutine that called RTRN now wishes to

return to the address which RTRN has moved to
the Q registers. RTRN can simply move this ad-
dress from Q to PCO in order to effect the desired
return.

For large stacks, RAM memory may be used for the memory
stack. Only minor logic medifications are required to CALL
and RTRN if the stack is in RAM. Assuming that the stack
pointer is maintained in scratchpad registers 8 (high) and
7 ({low), subroutine CALR and RTRR perform the same func-
tions as CALL and RTRN but, for a RAM stack, that may be
more than 256 bytes long.

As for the scratchpad stack, the RAM stack begins at a high
RAM address, and the stack address is decremanted as the
stack gets filled. The end of the RAM stack is identified by a
low address, represented using the symbols $PHI and SPLO
for the high and low order bytes of the address.

The stack peinter address identifies the last filled stack byte.

*VERSION OF SUBROUTINE CALL FOR RAM STACKS, WITH
*THE STACK POINTER IN SCRATCHPAD REGISTERS 8 AND 7.

CALR LR A7 LOAD LOW ORDER BYTE OF
STACK ADDRESS
LR 11.A MOVE TO HL
Ci SPLO COMPARE WITH END-OF-
STACK L.O. BYTE
LR A8 LOAD HIGH ORDER BYTE OF
STACK ADDRESS
LR 10.A STORE IN HU
BNE CAB IF LOW ORDER BYTE DOES
NOT EQUAL STACK END,
CONTINUE
Cl SPHI COMPARE HIGH ORDER
BYTES
BEQ CA20 IF EQUAL, STACK HAS
OVERFLOWED
CAB LR DC.H MOVE H TO DC

*SUBTRACT 2 FROM THE STACK ADDRESS, SINCE IT INCRE-
*MENTS WHEN MEMORY IS ACCESSED. BY SUBTRACTING
*2, DCO ADDRESSES THE SECOND FREE STACK BYTE.

L H’FE’

ADC

LR A KU MOVE KU TO STACK
ST

LR AKL MOVE KL TO STACK
ST

*SUBTRACT 2 FROM STACK ADDRESS, SINCE IT HAS INCRE-
*MENTED TO BEGINNING OF PREVIOUS ADDRESS.

LI H'FE’

ADC

LR H.DC RESTORE STACK POINTER
LR A1

LR T.A
LR A10
LR 8.A
POP RETURN
CA20 JMP SFUL STACK FULL ERROR

The logic of CALR differs from the logic of CALL only in the
way stack overflow is handled. Rather than leaving the stack
pointer addressing the next free byte of the stack, the stack
pointer addresses the last used byte of the stack. Stack over-
flow is tested for by comparing the contents of the stack
pointer with an address that has been spacified as the end
of the stack. This end of stack address can be equated to any
value that is convenient to program logic,

Notice that whenever memory is accessed via the DC reg-
isters the address in the DC registers is automatically incre-
mented. The stack in RAM has arbitrarily been selected to
begin at a high address and end at a low address, which is
the opposite direction as seen by the DC registers. Since
the DC registers address the last filled byte of the stack, two
must be subtracted from this address so that two bytes of
address data may be loaded into the stack without overloading
the last filled byte. Also, after the two bytes of address have
been loaded into the stack, two must again be subtracted
from the address in the DC registers so that the address cnce
again identifies the last filled byte of the stack.

Although the sense of direction of the stack is inverted with
regard to the DC registers when CALR is executed, stack
direction will agree with the DC registers when RTRR is exe-
cuted. Since stack access involves & forward and then a
reverse direction, it makes no difference what is chosen to
be forward and what reverse; either CALR or RTRR must
access the stack by decrementing addresses. This is contrary
to the sense of the DC registers which only increment addresses,

*VERSION OF SUBROUTINE RTRN FOR RAM STACKS, WITH
*THE STACK POINTER IN SCRATCHPAD REGISTERS 8 AND 7.

RTRR LR A8 MOVE THE STACK PCINTER

TOH

LR 10,A

LR A7

LR 11,A

LR DCH MOVE THE STACK POINTER
TO DC

LM { OAD HIGH ORDER BYTE

LR auA OF RETURN ADDRESS
INTO QU

LM LOAD LOW ORDER BYTE

LR QLA OF RETURN ADDRESS
INTO GL

LR H.DC SAVE STACK POINTER IN

LR A10 SCRATCHPAD BYTES 8
AND 7

LR 8A

LR Al

LR 7.A

LR PO.Q MOVE Q TO PCO

in F8 systems that have a 3852 and/or 38563 Memory Inter-
face device, if DC1 is not used to address data buffers, it can
be used effectively as a RAM stack pointer.

7.3.5 Multiple Subroutine Returns

Observe that the 16-bit addition subroutine in Section 7.1.4
requires two returns, one for an overflow in the answer, the
other for a valid execution.

Frequently subroutines may execute with more than one
possible outcome. The most efficient way of handling such
logic is to build multiple returns into the calling program and
inte the called subroutine. Here are some examples. First,
an error return:

Pl SUB1 CALL SUBROUTINE SUB1
BR ERR ERROR RETURN FROM SUB1
— NON-ERROR RETURN FROM
— SUB1

Next, multiple valid returns:

Pl suB2
BR PLUS RESULT IS POSITIVE
BR ZERO RESULT IS ZERO

- RESULT IS NEGATIVE

Subroutines RTRN and RTRR can easily be rewritten to handle
multiple returns. Instructions will be added that return, to
PCO, the last address entered into the stack, plus any dis-
ptacement that is in QL {scratchpad register 15} when the
subroutine is called. RTRN will now appear as follows, renamed
RTRD:

RTRD LR A8 MOVE STACK POINTER TO

ISAR

LR IS.A

LR Al INCREMENT ADDRESS TO
LAST FILLED BYTE

LR A QL LOAD LOW ORDER
ADDRESS BYTE

AS i ADD DISPLACEMENT IN QL

LR QLA STORE RESULT IN QL

LR AS LOAD HIGH ORDER

ADDRESS BYTE
LNK ADD ANY CARRY FROM LO
BYTE ADDITION

LR QULA STORE RESULT IN QU
R& LR AlS RESTORE ISAR
R7 LR 8.A

LR PO.C MOVE Q TO PCO

Taking advantage of RTRD, the 16-bit addition subroutine
will become:

AD16 LR K.P SAVE RETURN ADDRESS

IN K

PI CALL SAVE RETURN ADDRESS
IN SCRATCHPAD STACK

LR AD LOAD LOW ORDER
AUGEND BYTE

AS 2 ADD ADDEND LOW ORDER
BYTE

LR 2,A SAVE THE RESULT

LR A1 LOAD HIGH ORDER

AUGEND BYTE
LNK ADD ANY CARRY FROM
LOW ORDER BYTE ADD
BNO EIGHT IF THERE IS A CARRY OR
AN OVERFLOW, RETURN
WITHOUT DISPLACEMENT
BR ERR
EIGHT AS 3 ADD THE HIGH ORDER
ADDEND BYTE
LR 3A SAVE THE RESULT
LIS 2 FOR A GOOD RETURN, ADD
2 TO RETURN ADDRESS
BNO oK AGAIN IF THERE IS A
CARRY OR OVERFLOW
ERR CLR FOR AN ERROR RETURN,
ADD O TO RETURN
ADDRESS
OK LR aLA SAVE THE DISPLACEMENT
IN QL
Pl RTRD

Now AD16 will be called as follows:

AD186
ERROR ERROR RETURN

GOOD RETURN

7.3.6 Passing Parameters

Subroutine MADD, as described so far, is of limited value,
since the starting addresses of buffers BUFA, BUFB and
BUFC are fixed. MADD will only add the contents of two
fixed buffers and store the result in a third, fixed buffar. The
subroutine would be far more useful if buffer locations and
lengths could be specified at the time the subroutine is called.
This can be done and is called parameter passing.

The parameters to be passed to a subroutine are listed, in
the calling program, after the subroutine call. For example,
the call to MADD would appear as follows:

VALA EQU H'2080"
VALB EQU H2088’
VALC EQU H'2800’
COUNT EQU H*08’

*CALL TO MADD IN MAIN PROGRAM

Pl MADD CALL SUBROUTINE MADD

DC VALA VALA IS A TWO BYTE
AUGEND BASE ADDRESS

DC VALB VALB IS A TWO BYTE
ADDEND BASE ADDRESS

DC VALC VALC I5 A TWO BYTE
ANSWER BASE ADDRESS

DC COUNT COUNT IS A ONE BYTE
BUFFER LENGTH

BR ERROR RETURN HERE IF THERE IS

AN ERROR
RETURN HERE FOR
SUCCESSFUL EXECUTION

Once MADD is entered, the return address in PC1 is in
fact, the address where the augend buffer starting address
will be found. Before entering into the body of the subroutine,
MADD will toad parameters into H, & and DC1. This is
illustrated below for subroutine MADD with parameters,
renamed MADP.

MADP LR K.P SAVETHE RETURN ADDRESS

INP

PI CALL SAVETHE RETURN ADDRESS
IN THE STACK

LR A KU MOVE THE RETURN
ADDRESS FROM K

LR 10A TO DCO. DCO WILL NOW
ADDRESS THE FIRST OF THE

LR AKL TWO BYTES IN WHICH VALA
IS STORED, FOLLOWING

LR 11.A THIS CALL TO MADP

LR DCH LOAD PARAMETER
ADDRESS INTO DCO

LM LOAD VALA INTO H

LR 10.A

LM

LR 11.A

XDC MOVE VALA FROM HTQ
DC1 BY

LR DCH EXCHANGING DCO WITH DC1

XDC MOVING VALA TO DCO,
THEN

LMt AGAIN EXCHANGING DCO
AND DC1

LR 10,A NEXT LOAD VALB INTO H

LM

LR 11,A

LM LOAD VALC INTO Q

LR Qu.A

LM

LR aLA

LM LOAD COUNT INTC

’ SCRATCHPAD BYTE O
LR 0.A :
LR DCH MOVE VALB TO DCO

*THE MULTIBYTE ADD MAY NOW BEGIN

COM INITIALLY CLEAR THE CARRY
BIT

LR JwW

LOOP LM LOAD THE NEXT AUGEND

BYTE

LR w.J

LNK ADD ANY PREVIOUS CARRY

LR Jw SAVE STATUS IN J

XDC ADDRESS ADDEND BUFFER

AM ADD CORRESPONDING
ADDEND BYTE

XDC READDRESS AUGEND
BUFFER

LR H.DC SAVE AUGEND ADDRESS
INH

LR DC.a LOAD ANSWER BUFFER
ADDRESS

8T STORE THE ANSWER

LR Q,DC SAVE THE ANSWER BUFFER
ADDRESS IN G

LR DCH MOVE AUGEND ADDRESS
BACK FROM H

BNC TWT1 NO CARRY FOR NEXT BYTE

LR JW

TWTI1 D3 DECREMENT COUNTER
BNZ LoopP RETURN FOR MORE
LR wW.J
LIS 9 LOAD A FOR A GOOD
RETURN
BNC ouT TEST FOR A FINAL CARRY
LIS 7 THERE IS A CARRY,
PREPARE FOR ERROR
ouT LR QLA SAVE THE DISPLACEMENT
IN QL
Pl RTRD RETURN FROM SUBROUTINE

Parameter passing works as follows:

A subroutine that expects to receive parameters will initiate
execution with the return address pointing to the first byte
of tha parameter list, and not to the instruction which must
be executed once program control returns to the calling pro-
gram. In other words, after subroutine CALL has executed,
the address saved on the stack is the address of the first
parametsr, not the address of the next instruction to be exe-
cuted in the calling program. Initial subroutine logic must
therefore move the address of the first parametar to the
DCO registers, and must then appropriately load parameters
into registers whare they will be needed for execution of
the subroutine. This process is straightforward data movement
and requires no special explanation.

Observe that when subroutine RTRD is called to effect a
return to the calling program {in this case the main program
which called MADP} the return address, as stored in the
stack, is still the address of the first parameter byte. There-
fore, before RTRD is called, the value loaded inte the accu-
mulator is not zero or a displacement representing multiple
returns. It is the number of bytes of parameters, or the num-
ber of bytes of parameters plus the displacement of the multi-
ple returns. For example, subroutine MADP requires seven
bytes of parameter information to foliow the call to MADP.
Therefore, an error return from MADP requires the value 7
to be loaded into the accumulator before RTRD is called; a
value of 9 must be loaded into the accumulator before RTRD
if there is no error.

7.4 MACROS

Observe in Figure 7-2{A} that an instructioh sequence may
reappear in a program each time itis reused. Such an instruc-
tion sequence may he identified as a macro.

Refer to Figure 7-2. If the instruction sequence represented
by “s' is a subroutine (we will assume that it is named
SUB1), then wherever the logic of SUB1 is required. a FI
or PK instruction in the main program will cause execution
to branch to one set of code, as illustrated in Figure 7-2(B)
and described in Section 7.3. i, on the other hand, the
logic of SUB1 is to be treated as a macro, then the name
SUB1 will appear in the mnemonic field of the source pro-
gram as though SUB1 ware the mnemonic for an instruction.
In the object program, the assembler will actually insert
the sequence of instructions represented by SUB1 wherever
SUB1 appears in the source program, as illustrated in Figure
T-2{A).

7.4.1 Defining and Using Macros

Beginning with a very simple example, suppose the instruc-
tion sequence which creates the correct carry status in multi-
byte addition routines is to be identified as a macro namead

CBIT, rather than as a subroutine named CBIT. The macro is
defined in the source program by enclosing the instructions
of the macro between assembler directives MACRO and
MEND, as follows:

MACRO

CBIT

LR A9 MOVE STATUS FROM LNK
ADDITION TO A

NI HO2’ MASK QUT ALL BUT C BIT

LR JwW MOVE STATUS FROM BYTE
ADD TO W

AS] ADD STATUSES

LR 9.A RETURN STATUS TO JVIAW

LR wW.J

MEND

In theory, a macro definition, as illustrated above, could ap-
pear anywhere in a source program; the assembier simply
takes everything between the MACRO and MEND directives
and halds it to one side, inserting the instructions whenever
it sees the macro name appear in the mnemonic field of an
instruction. In practice, it is good programming to collect
macro definitions either at the very beginning or at the very
end of & source program.

As an example of how a macro works, subroutine MADD
could specify CBIT as a macro, rather than as a subroutine,
as follows:

{Body of subroutine MADD)

EGTN LR DC.H MOVE AUGEND ADDRESS
BACK TO H
LR K.P SAVE PC1INK
NNTN CBIT INSERT INSTRUCTIONS
FROM CBIT MACRO HERE
TWT1 D5 o DECREMENT COUNTER
BNZ Loor RETURN FOR MORE
TWT2 PK RETURN FROM SUBROUTINE

FOR END

When the assembler assembles the above instruction se-
guence, instruction NNTN will be replaced directly by the six
instructions listed between MACRO CBIT and MEND. For
this reason, the programmer may look upon a macro simply
as a short-hand method of writing source programs (i.e, a
method of taking the tedium out of re-writing the same
instruction sequence again and again).

7.4.2 Macros with Parameters

A simple macro, as illustrated for CBIT in Section 7.4.1, is
of limited value; it makes an object program longer, but it
makes writing the source program easier. The program
aexecutes faster since the Pl and POP instructions are not
executed.

Macros with parameters are more useful. Refer to subroutine
MADP, in Section 7.3.6. In order to make the multibyte
addition program MADD usetul, it was modified so that the
call to subroutine MADD could be followed by seven bytes

of parameter data, including three 2-byte addresses and
a single byte buffer length counter. Instructions at the be-
ginning of subroutine MADP transfer these parameters to
the H, Q and DC1 registers before performing the mukibyte
addition, thus allowing subroutine MADP to perform muiti-
byte additions on the contents of buffers that can have any
langth and can be anywhere in memory.

The multibyte addition may also be specified as a macro,
where the macro name is followed by a number of para-
meters. In this case, the parameters would again be three
addresses and a byte count. Now when the assembier sub-
stitutas the instruction sequence of the multibyte add for the
macro name appearing in an instruction mnemonic, itchanges
instructions within the seguence according to parameter
specifications.

When a macro is defined, macro parameters are listed after
the macro name with an ampersand as the first character
of each parameter and one space separating parameters.
This is illustrated for macro MADP below;

MACRO

MADP &VALA &VALB &VALC &CNT

ONE LI &CNT USE SCRATCHPAD
REGISTER O
TWO LR 0.A AS A COUNTER
THREE DCI &VALC SAVE THE ANSWER BUFFER
FOUR LR anc STARTING ADDRESS IN Q
FIVE DCi &VALA SAVE THE SOURCE BUFFER
SIX XDC ADDRESSES IN DCO AND DC1
SEVEN DCI &VALB
EIGHT COoM INITIALLY CLEAR THE
CARRY BIT
LR JW
LoOP L LOAD THE NEXT AUGEND
BYTE
LR w.J CARRY FROM PRIOR ADD
TO STATUS
NINE LNK ADD ANY PREVIOUS CARRY
TEN LR JwW SAVE STATUS IN J
ELEV XDC ADDRESS ADDEND BUFFER
TWEL AM ADD CORRESPONDING
ADDEND BYTE
THRT XDC READDRESS AUGEND
BUFFER
FRTN LR H.DC SAVE AUGEND ADDRESS
INH
FFTN LR DC.Q LOAD ANSWER BUFFER
ADDRESS
SXTN ST STORE THE ANSWER
EGTN LR DC.H MOVE AUGEND ADDRESS
BACK TO H
BNC TWT1 NO CARRY FOR NEXT BYTE
TWTY LR Jw SAVE CARRY FROM AM

INSTRUCTION
DECREMENT COUNTER
RETURN FOR MORE

TWT1 D& 0
BNZ LOOP
MEND
Any program can tell the assembler to insert the instruction
sequence specified by macro MADP, changing the symbols
&CNT, BVALA, &VALB and &VALC to any four symbols speci-
fied in the operand field of the instruction that references
macro MADP. For example, in order to reproduce the multi-
byte addition instruction sequence as illustrated in Section
7.2.2, the following instruction would have to appear:

MADP BUFA BUFB BUFC CNT

When the assembler encounters the above instruction, it will
substitute all of the instructions listed between MACRO MADD
and MEND; however wherever it finds &CNT it will replace
it with CNT, wherever it finds &VALA, RVALB or &VALC it
will substitete BUFA, BUFB or BUFC, respectively.

7.4.3 Rules for Defining and Using Macros

The following few rules apply to the use and definition of
macros:

1} No macro can be referenced in a program unfess it
has been defined as a macro, using the MACRO and
MEND assembler directives.

2) When a macro is defined, it can reference another
macro s0 long as the other macro is defined separately
elsewhere.

3) f a macro is defined with parameters, then every
time the macro is specified within the body of a pro-
gram, the specification must have a valid symbol in
the operand field, corresponding to every parameter
in the macro definition.

7.4.4 When Macros Should be Used

There are two circumstances when macros are more ef-
ficient as a programming tool than subroutines.

Short instruction sequences that are freguently used within
a program are often better represented as macros, if sub-
routine addresses are being maintained in a stack. It takes
a certain amount of time to store a return address in a
stack, then at the end of a subrouting to retrieve the ad-
dress from the stack. If the body of the subroutine is quite
short, the time taken to maintain the stack may become
excessive. Under such circumstances it is better to repro-
duce the instruction sequence as a macro wherever it is
needed within a program.

Subroutines which require a large number of parameters
to be passed from the main subroutine are frequently bet-
ter represented as macros; a considerable number of in-
structions may be needed to move the parameters from
the parameter list that follows the subroutine call, to the
registers or memory locations out of which the subroutine
will access the parameters. Consider subroustine MADP;
if this subroutine is called only two or three times it is
probably more efficient to represent it as a macro rather
than as a subroutine.

Macros always result in faster program execution than
subroutines. Macros may result in longer programs than
subroutines. Therefore, in an application where speed is
important, macros should be used in preference to subroutines.

7.5 JUMP TABLES

A jump table is a programming device which is particularly
useful in microprocessor applications. A jump table allows
an index number t¢ be loaded into the accumulator after
which program execution jumps to a memory location which
is dedicated to that index number.

Jump tabies are commenly used in switching applications,
where data may be received from, or control signals may have
to be sent to, one of many external devices.

7.5.1 Jump Table Using Jump Instructions

The F8 instruction set is well-suited to execution of jump
tables. As illustrated, one jump table may serve an entire
application of diverse operations. The jump table consists
of nothing more than a large number of jump instructions.
To execute the jump table, a program simply loads an I.D.
number into the accumulator, then jumps to the table logic.
The table logic adds the contents of the accurnulator, three
times, to the address of the first jump instruction, which is
stored in the DCO registers. The sum is moved (via the Q
registers} to the program counter and the jump is effected.

*JUMP TABLE PROGRAM. JUMP NUMBER IS ASSUMED TO
*BE IN THE ACCUMULATOR.

JUMP DCI JMPO LOAD THE FIRST JUMP
ADDRESS INTO DCO
ADC ADD THREE TIMES THE
BRANCH
ADC INDEX TO DCO, FOR THE
ADC THREE BYTES OF A JMP
INSTRUCTION
LR Q,DC MOVE DCO TO PCO
LR PC.Q JUMP OCCURS HERE
JMPO JMP AD
JMP Al
JMP A2
JMP A3
JMP Ad
etc.

7.5.2 Jump Table Using Address Constants
Another jump table technique uses a table of addresses
which are indexed as in the previous example. However,
instead of a JUMP (LR PO,Q) to the jump table, the address
is loaded from memaory into Q. The LR PO,Q instruction then
causes a direct jump to the address in Q. The major advan-
tage of this technigue is that the table is only two bytes per
entry, as compared 1o three bytes in the previous example.
It also executes using fewer instruction cycles.

*THE JUMP NUMBER IS ASSUMED TO BE IN THE
*ACCUMULATOR

JUMP DcCl JMPO LOAD THE FIRST JUMP
ADDRESS INTO DCO
ADC ADD TWICE THE JUMP
ADC NUMBER. DCO NOW AD-
DRESSES A JUMP ADDRESS
LM LOAD FIRST BYTE OF JUMP
ADDRESS
LR aH.A STORE IN QH
LM LOAD SECOND BYTE OF
JUMP ADDRESS
LR QLA STORE IN QL
LR PO.Q BY MOVING Q TO PO, FORCE
JUMP
JMPO bC AQ
DC Al
bDC A2
DC A3
DC Ad
etc.

7-186

7.5.3 Jump Table Using Displacement Tables

Under some circumstances the addresses of the jump table
may all be within 256 bytaes of each other. When this situa-
tion exists, only a displacement need be created in the tabls.
This displacement, when added to some base address, wili
produce the address required for the jump. Notice that in the
following exampie, entry FOUR and FIVE go to the same lo-
cation. This is a variation that is quite useful. Perhaps the
values 4 and 5 are invalid and an arror routine needs to be
called. The jump table will satisfy this condition in a mest
efficient manner without a separate compare instruction for
each invalid value. Also notice that the entry points nesd
not be in any particular sequence; however, in this example
A1 must be the first antry point encountered, and it must
have the lowest address in order for the arithmestic to be valid.

This displacement table is most efficient since the table values
are only one byte each. If an entry is beyond the 256 range
it is possible to treat it as a special case within the table.
Notice that AG is more than 2568 bytes beyond the start of
A1l and is too large to insert before Ad. To include it insert
a JMP AB prior to the coding at A4, If this instruction is
labeled AB6, an entry in the table would be;

SIXS DC {ABG-A1-128) 82

The value of THRE would now bhecome 85,

*THE JUMP NUMBER IS ASSUMED TO BE IN THE

*ACCUMULATOR
JUMP DCl ZERO LOAD FIRST TABLE
LOCATION INTO DCO
ADC ADD VALUE FROM
ACCUMULATOR
LM LOAD TABLE VALUE
TO ACCUMULATOR
DCI (A1+128) LLOAD FIRST ORIGIN
ADC ADD DISPLACEMENT
VALUE ADDED TO BC
LR a,.nC RECALL DC TO Q
LR £0.Q JUMP TO ROUTINE
ZERO DC (A1-A1-128) VALUE=-128
ONE DC {A2-A1-128) VALUE=- 78
WO pc {AB-A1-128) VALUE= 22
THRE DC {A4-A1-128) VALUE= 82
FOUR DC (ERR-A1-128) VALUE=- 63
FIVE DC (ERR-A1-128) WVALUE =- 53
SIX bC (A3-A1-128) VALUE=- 28
SVEN DC (AB-A1-128) VALUE= 207
TOO LARGE!

Values are displaced by -128 to take into account the fact
that the DCI instruction points to the middle of the table
{A1+128). Therefore, addresses are created as shown on the
following page.

4

ARBITRARY DECIMAL
ADDRESSES:
—4—- 2100 A1 STARTS HERE
2160 A2 STARTS HERE
W
=]
E 2175 ERR STARTS HERE
T
E 2200 A3 STARTS HERE
@
§ 2250 AB STARTS HERE
2310 A4 STARTS HERE
_Y =238
2435 A6 STARTS HERE
OUT OF RANGE
2585 AB ENDS HERE

7.6 STATUS, BITS AND BOOLEAN LOGIC

The F8 instruction set is rich in boolean logic instructions
which are very useful in applications manipulating bits and
cantrol lines.

Examples given in the following subsections demonstrate
some elementary uses of boolean logic instructions, along
with some less obvious but commonly needed routines.

7.6.1 Manipulating Individual Bits

immediate boolean instructions specify data in the operand
of the instruction; they may be used to set ar reset individual
kits within the accumulator.

To reset one or more bits within the accumulator, AND the
accumulator contents with a mask which is the complement
of the bits to be reset. For example, the following instructions
will reset bit 3 of scratchpad byte 1;

LR A1 LOAD SCRATCHPAD BYTE
1 INTO A

NI HF?* MASK QUT BIT 3

LR 1.A RETURN TO SCRATCHPAD

BYTE 1

Similarly, individual bits can be set by ORing the accumu-
lator with a mask which has a 1 in every bit position that
is 10 be set. For example, bit 3 of scratchpad byte 1 contents
can be set to 1 as follows:

LR A LOAD SCRATCHPAD BYTE
1 INTO A

Ol H'04" SETBIT 3

LR 1A RETURN TG SCRATCHPAD
BYTE 1

Masks may also be accessed out of RAM or scratchpad
memory. The following instruction sequence takes every
byte from a buffer CNT bytes long, starting at BUFA; it sets
to O the bits specified by a mask stored in a memeory byte
addressed by MASK. BUFA, CNT and MASK are symbols
which have been given arbitrary values below,

BUFA EQuU H'2380°
MASK EQU H'O8FF’
CNT EQU 50

DCI MASK STORE THE MASK ADDRESS
INH
LR H.DC
DCl BUFA STORE THE BUFFER
STARTING ADDRESS IN Q
LR Q,DC
LI CNT USE SCRATCHPAD BYTE
OAS A
LR 0.A COUNTER
Loop LM LOAD NEXT BYTE
L1 LR DC.H LOAD MASK ADDRESS
L2 NM AND ACCUMULATOR WITH
MASK
L3 LR Dc.a RELOAD BYTE ADDRESS
L4 ST STORE MASKED BYTE IN
ORIGINAL BYTE POSITION
L5 LR q,Dc SAVE INCREMENTED
BUFFER ADDRESS IN Q
L6 DS 0 DECREMENT COUNTER
L7 BNZ LOOP RETURN FOR MORE

in addition to demaonstrating use of the NM instruction, the
above example shows how 1o process data in a single buffer,
restoring a modified byte to its original byte position.

The program proceeds as follows:

The instructions preceding LOOP load the mask address into
H and the beginning buffer address into Q. The buffer length
is loaded into scratchpad byte A which is nsed as a counter.

LOOP The data counter holds the initial buffar address
when this instruction is first executed and the next
byte address on all subsequent executions of this
instruction. This instruction therefore loads the
next byte from BUFA.

L1 Load the mask address from the H registers into
the data counter, wiping out the incremented buffer
address that resulted from instruction LOOP.

L2 AND the contents of the accumulator with the
mask byte. The fact that the AND with memory
instruction will increment the address in the data
counters is not consequential since this incremented
address is not saved. On the next execution of
this instruction, the original mask address stored
in the H registers will be reused.

L3 Reload the buffer address from the Q registers.
This is the same address that was used by instruction
LOOP.

L4 Store the contents of the accumulator back in the
buffer. Since the address loaded by L3 is the same
address as was used by instruction LOOP, the
masked byte will be stored back in the same memory
location from which it was loaded.

LS This time save the incremented address in the
data counters back in the Q registers.

L8
L7

Decrement the counter in scratchpad byte 0. If
the result is zero, end. f the result is not zero
process the next byte of the buffer.

By using the NM instruction, the above example is resetting
(to 0) selected bits from every byte in BUFA. By merely re-
placing the NM instruction with an OM instruction, selected
bits from every byte of BUFA could be set to 1.

By storing the mask byte in a scratchpad register, the pro-
gram can be greatly simplified. The instruction sequence
below is similar to tha previous example, but the mask byte
is stored in scratchpad register 1, and the DC1 registers are
used to hold the buffer address, rather than the Q registers.

Notice that at the LM instruction (LOOP), DCO is incrementsed;
prior to the ST instruction, DCO and DCT are exchanged.
The ST instruction then increments DCO, thus both addresses
remain synchronized.

MASK EQU B’any binary value’
BUFA EQU H'2380°
CNT EQU 50
ONE LI MASK
TWO LR 1,A
(37| BUFA STORE BUFFER ADDRESS
XDC IN DCO AND IN DC?
REGISTERS
DCl BUFA
LI CNT USE SCRATCHPAD BYTE O
LR 0A AS A COUNTER
LOOP LM LOAD NEXT BYTE
THREE NS 1 AND WITH MASK IN
SCRATCHPAD BYTE 1
XDC
ST STORE IN ORIGINAL
LOCATION
DS 0 DECREMENT COUNTER
ENZ LOOP RETURN FOR MORE

Again this routine can be simplified even further by deleting
instructions ONE and TWO and changing instruction THREE
to one of the following;

NI MASK AND WITH MASK
o MASK OR WITH MASK
Xl MASK EXCLUSIVE OR WITH MASK

This change would result in saving two bytes, however the
loop time would be increased by 1.5 cycles.

7.6.2 Testing for Status

The EXCLUSIVE-OR instruction is very useful as a means of
detecting changed statuses. There are many applications in
which it will be necessary to keep a record of status for various
control lines, and to detect when individual control line sta-
tuses change and how they change. As illustrated in the
instruction sequence below, eight control lines have their
statuses maintained in scratchpad byte 3. When new sta-
tuses are input from 1/0Q port Q, they are tempararily saved
in scratchpad byte 4. By EXCLUSIVE-ORing the new and old
statuses, the accumulator identifies those status bits which
have changed. By ANDing the changed status indicators
with the old status, those indicators which went from “on™
to “off” are identified. By EXCLUSIVE-ORing this result with
the changed status indicators, those statuses which went
from “off” to “on’ are identified.

IN 0 INPUT NEW STATUS
52 LR 4.A SAVE IN SCRATCHPAD
BYTE 4
53 X5 3 EXCLUSIVE-OR ACCUMU-
LATOR WITH QLD STATUS
54 LR 5.A SAVE "CHANGED
STATUSES” INDICATORS
IN &
S5 NS 3 AND WITH OLD STATUSES
S6 LR 6,.A SAVE "STATUSES TURNED
OFF"IN &
87 xS 5 EXCLUSIVE-OR WITH
“"CHANGED STATUSES”
S8 LR 7.A SAVE "STATUSES TURNED
ON"IN 7
S9 LR Ad NEW STATUS FROM SAVE
S10 LR JA OLD STATUS FROM NEXT
USAGE.
Suppose the old status was:
76543210 Bit No.
OldStatus =1 0111000
Suppose the new status is:
76543210 Bit No.
New Status = 11010110
Bits 6, 2 and 1 have turned on.
Bits B and 3 have turned off.
Bits 6, 5, 3, 2 and 1 have changed.
Here is the result of instruction S3:
76543210 Bit No.
Old Status 10111000
New Status 11010110
Changed Statuses 01101110
Here is the result of instruction $5:
76543210 Bit No.
Changed Status 01101110
Old Status 10111000
Turned Off 00101000
Here is the result of instruction S7;
76543210 Bit No.
Turned Off 00101000
Changed Statuses 01101110
Turned On 01000110

7.7 POWERING UP AND STARTING PROGRAM
EXECUTION

When power is turned on, all PCO registers in an F8 micro-

processor system are set fo Q. Therefore the first instruction

executed is located at memory byte O

Every F8 microprocessor system must, therefore, have a
memory device {either a 3851 PSU, 3852 DMI or 3853 SMI}.
The first pragram to be executed must be criginated at H'OO'
as illustrated on the following page.

ORG H'0O
START — FIRST INSTRUCTION
— EXECUTED

’ ~ The power on detect circuit for an F8 system is located in the
- CPU. This circuit insures that all eritical control circuits and
registers are in a valid operating condition when power is
first applied. it performs the following functions:

® Fushes previous contents of the pragram counter to

the stack register
® Resets the program counter to address '0000"

pe

ﬁ 3

® Resets the Interrupt Control Bit (ICB}
® Sets control block on the 3852 MI circuit

When powaer is connected to the circuit or the reset line goes
low, the CPU clears the pregram counter {PCO), pushing its
previous contents into the stack register {PC1}). Therefore,
the instruction in location zero is executed first. The inter-
rupt control bit is alsc cleared at this tima. The rest of the
F8 system is initialized under program control. The local in-
terrupt block of the individual memory devices must be lpaded
before allowing any interrupts to occur. Qutput latches must
be resst to zero before they may be used 1o input data.

INPUI/OQUIPUI PRUGHKAIVIVIING

Imput/output programming covers program steps that cause
data to be transferred between the F8 microprocessor system
and the world beyond the microprocessor system.

There are three separate and distinct types of input/output
{170} programming: Programmed 170, Interrupt 1/0 and Direct
Memory Access (DMAJ).

Programmed 1/0 is characterized by the 3850 CPU executing
an instruction to initiate and contral the 170 transfer of a single
byte of data, via an /O port. The key feature of programmed
170 is that it is initiated by the CPU, on a byte-by-byte basis.

Interrupt 170 is characterized by an external device issuing
an interrupt to the 3850 CPU; (this concept is discussed in
Section 2.2.2). The interrupt does not itself cause any input
or output data transfer to occur; rather it initiates execution
of a program which performs any required programmed 1/0.

DMA has been described conceptually in Sections 2.2.4,
2.6.3 and 2.8. DMA transfers data between a memory device
within the microprocessaor system and any device external to
the microprocessor system, in parallel with other micropro-
cessor operations. DMA is initiated using programmed /O
and, optionally, may terminate with an interrupt.

The use of software clocks is also covered in this chapter.
Even though software clocks have nothing to do with trans-
fer of data between the microprocessor system and the out-
side world, they do allow events within the microprocessor
system to be synchronized with real time.

8.1 PROGRAMMED I/0

A programmed input or output operation moves a byte of
data from the 3850 CPL) accumulator either to an 1/0Q port
{OUT), or from an /O port to the accumulator {(IN).

Four iwstructions enable programmed |/0: INS and iN enabls
input, while QUTS and OUT enable output. {Sea Sections
6.16, 6.18, 6.33 and 6.34.)

Note that a number of 1/0 ports are accessed by |/0 instruc-
tions, but transfer no data between the microprocessor system
and the outside world. These | /0 ports hold control information
used by interrupt 170, DMA and real time clocks. Section 6.16
summarizes the 1/O port addresses used by the F8, and
indicates how the individual port addresses may be used.

Programmed 170 is a very open ended subject, since it is de-
pendent on how external circuitry accesses the /0 ports. The
following subsections describe some general approaches to
I/0 programming as seen by the CPU. Actual applications will
usually require modified versions of the given programming
tachniques.

8.1.1 Polling on Status

A key feature of programmed I/0 is that the microprocessor
system and extarnal devices operate at different speeds; the
external device must transfer data at a rate which is slower
than the 170 program’s execution speed.

The simplest way of handling programmed | /0, when external
devices run slower than the microprocessor, is to have the ex-
tarnal device input a ““status byte’” to the 10 port when it is

81

ready to transmit or receive data. The 38560 CPU continuously
inputs a byte of data from the port until the “ready status”
appears. For example, suppose a 1 in the high order bit (bit 7)
of tha |70 port signifies a ready status; the following routine
will input a byte of data via port O:

*ROUTINE TO INPUT A BYTE OF DATA VIA PORT O, POLLING
*ON STATUS TO SYNCHRONIZE WITH THE EXTERNAL
*DEVICE.

INC LIS 0 FIRST CLEAR THE PORT
outTs o
LoOP iNS 0 INPUT STATUS
BP LOOP RETURN IF BIT 7 is O
LO INS 0 BIT 7 IS 1. INPUT A DATA
BYTE
ST STORE IN MEMORY BYTE
ADDRESSED BY DCO
L1 Pl TEST BRANCH TO END OF INPUT
TEST
L2 BR LOOP RETURN FROM TEST FOR
MORE INPUT
L3 RETURN FROM TEST FOR
END

Three features of the above routine nsed to be explained. The
first two instructions clear the output port. This is necessary
because data being input at an 170 port is ORed with what-
ever is already in the port. if, by chance, the high order bit
of tha last data byte input was 1, this would be interpreted
as a ready status.

The data which is input to the accumulator by instruction
LOOP will be interpreted as a byte of status. While in this
simple application only tha high order bit of the status byte
is being interrogated, in any real application all eight bits of
the status byte could be assigned meaning. In this case,
when bit 7 of the status byte is tested to be 1, a byte of data
is input by instruction LO to the accumulator. This routine
assumes that the time delay between execution of instructions
LOOP and LO is sufficient for the external device to transmit
a data byte.

This routine assumes that an indeterminate number of char-
acters are expected on input. A subroutine named TEST is
called 1o determine if more bytes of data are expected. The
operations performed by subroutine TEST are immaterial to
the KO routine. Subroutine TEST must have two returns; 1o
instruction L2 if another byte of data is to be input, or to in-
struction L3 if data input is complete.

Each byte of data that is input to the accumulator in sub-
routine INO must be stored in some read/write memory loca-
tion. INQ assumaes that the DCO registers address a RAM byte
into which the data must be stored. This assumaes that before
INO is called as a subroutine, the beginning address of a RAM
data buffer is loaded into the DCO registers. Data bytas, as
they are input, will be stored in ascending bytes of the ad-
dressed RAM data buffer, Scratchpad bytes can also be used
to hold data being input.

Subroutine QUTO, described below, is a variation of subroutine
INO. OUTO outputs data from a RAM buffer. The only dif-
ference batween subroutinas INO and QUTQ is that in QUTO,
once a ready status has been detected, the data byte which

is to be output must first be transferred from memory to the
accumulator before being output to port 0.

Both subroutines INO and OQUTO can addrass any port that
the INS and QUTS instructions can address. In order to ad-
dress other ports it is only necessary to replace the INS and
QUTS instructions with IN and OUT instructions.

*ROUTINE TO OUTPUT A BYTE OF DATA VIA PORT 0. POL-
*LING ON STATUS TO SYNCHRONIZE WITH THE EXTERNAL
*DEVICE

QuUTO LI 0 FIRST CLEAR THE PORT
outs 0
LOOP1 INS 0 INPUT STATUS
BP LOOP1 RETURNIFBIT7isO
LM BIT 7 1S 1. READ FROM
MEMORY THE BYTE TO BE
OUTPUT
MO outs 1 QUTPUT THE DATA BYTE
M1 P TEST BRANCH TO END OF INPUT
TEST
m2 BR LOOP1 RETURN FROM TEST FOR
MORE INPUT
M3 RETURN FROM TEST FOR
END

8.1.2 Data. Status and Controls

Observe that in Section 8.1.1, a byte input by an external
device may be interpreted as status information or as data.
Similarly, the 3850 CPU may output a byte which is to be
interpreted as control signals or as data.

To illustrate, consider an F8 microprocessor system being
used to read data input from a keyboard, block the data into
256 byte records, then write the records out to & cassette.
Events would proceed as follows:

1) Using a programmed input sequence such as INO,
interpret a byte input from the keyboard as status.
When a ready status is sensed, interpret the next
byte arriving from the keyboard as data.

2} A subroutine such as TEST is called to create a 2566
byte record in RAM, in the format needed for output
to the cassetts.

3) Whaen the microprocessor is ready to write a record
to the cassette, it must first turn the cassette drive
motor on, since the cassetta drive will be stationary
during the intervals when records are notbeing written
out. The microprocessor will turn the cassette drive
on by outputting an appropriate control byte whose bit
pattern is determined by the spacifications of the
cassette drive controller.

4) The cassette drive will respend to the control byte,
commanding the drive be turned on by transmitting
back a status byte indicating that the command was
successfully executed and the drive is now ready to
receive data.

5} Upon receiving back the ready status from the cassette
drive the microprocessor will output 266 bytes of

8-2

data. Depending on the design of the cassette drive,
the cassette drive controller may transmit a status
byte back to the microprocessor after each individual
data byte has been received. This status byte reports
that the previous data byte has been recorded accu-
rately, and the controller is ready to receive and record
the next byte of data.

6} After the microprocessor has completed transmittal of
an entire record of data, it must send a control signal
to the cassette drive commanding the cassette drive
to stop forward movement.

7} When all records have been written to the cassette
drive, the microprocessor willissuea third control com-
mand which causes the cassette drive to mechanically
rewind.

Observe that this simple application receives either data or
status from the keyboard, then outputs either controls or
data to the cassette drive; additional status information may
come back from the cassette drive,

Any external device may transmit two types of information
to tha microprocessor systam: data or status.

Any external device may receive two types of information
from the micraprocessor system: data or controls.

Thus there are four types of information that may be trans-
farred between the microprocessor system and an external
device. They are:

a) data in

b} status in
c) data out
d} control out

An external device may communicate with the microproces-
sor system using one, two, three or all four of the above types
of information. For example, the keyboard uses “'data in” and
status in” but does not use “data out” or “controls out”. The
cassette driva in the illustrated application uses “'status in”,
~data out’” and “‘controls out” but doas not use “data in”. Of
course the cassetta drive would be capable (at another time)
of using "“data in”', when the data which was recorded on the
cassette is subseguently read back into the microprocessor
system.

It is feasible to use one port for all four of the information
transfer types listed above when communicating with any
one external device. For example, one 1/0 port could be used
1o recaive status and data from the keyboard, and could also
be used to receive status or data from the cassette drive and
to output controls or data 1o the cassette drive. However, it
more than one type of information is to go through one 1/0
port, external logic must have the means of multiplexing in-
formation in or out. A scheme that uses more 1/0 ports, but
less external logic, allocates one port for data in or out and
another port for status in or controls out. For example, /0
port 0 may be assigned to keyboard status in, 1/0 port 1 may
be assigned to keyboard data in, 170 port 4 may be assigned
to cassetta status in and controls out and 170 port & may be
assigned to cassette data in and out.

4

LK

ol

8.1.3 Parallel Data and Control Ports

Many applications will Fequire data to be handled on paths
that are more than eight bits wide. Sixteen-bit data, for
example, is a common word size. Less frequently, it will be
necessary to handle more than eight control lines at a timae.

Data paths that are more than eight bits wide can be handled
in 8-bit units, sequentially through a single port. Alternatively,
two or more ports may be assigned to one external data bus
so that, whenever the microprocessor inputs data from &n
external device or outputs to the external device, it accesses
each |/0 port allocated to the data bus. This is illustrated be-
low in subroutine IN16, which inputs data in 16-bit units via
ports 4 (bits 0-7) and port & (bits 8-1 5},

*ROUTINE TO INPUT 16 BITS OF DATA VIA PORTS 4 AND 5,
*POLLING ON STATUS VIA PORT 0 TO SYNCHRONIZE WITH
*THE EXTERNAL DEVICE

IN16 LIS 0 FIRST CLEAR THE STATUS

PORT TO REMOVE PREVIOUS
outs o READY STATUS
LOOP INS 0 INPUT STATUS
BP Looe RETURN IF BIT 7 1S 0
Lo INS 4 BIT 715 1. INPUT FIRST DATA
BYTE
ST STORE IN MEMORY BYTE
ADDRESSED BY DCO
INS 5 INPUT SECOND DATA BYTE

ST STORE IN NEXT MEMORY
BYTE (ADDRESSED BY DCO)

L1 Pl TEST BRANCH TO END OF INPUT
TEST

L2 BR LOOP RETURN FROM TEST FOR
MORE INPUT

L3 RETURN FROM TEST FOR NO
MORE INPUT

8.2 INTERRUPT /0

Two circumstances under which interrupts are commonly
used to control IyQ operations are:

The programmed 1/0, described in Section 8,1, has the severe
disadvantage that the micreprocessor system spends a great
deal of its time reading a status byte and waiting for the sta-
s byte to signal “ready”. If the externai device operates at
speeds close to that of the microprocessor, the wasted time
may be unavoidable, For exampie, if the microprocessor can
only execute ten instructions between each byte transmitted
or received by the external device, it is probable that these
ten instructions can be effectively used testing or processing
each data byte as it is transferred. On the other hand, if the
3850 CPU can execute approximately one hundred instruc-
tions between bytes of data being transmitted to or from the
external device, there is sufficient time between data trans-
fers for the microprocessor to be doing other useful work
which may or may not be related to the data transfer taking
place. If instead of sending a ready status, the external de.
vice transmits an interrupt request signal every time it is
ready to transmit or receive a data byte, this signal can be
used by the 3850 CPU to suspend exaecuting whatever pro-
gram was being executed, process a single byte of data, then
return to the suspended program.

The transfer of a sequance of data bytes at a known data rate
constitutes a sequence of predictable events. In many ap-
plications an external device's nead for access to the micro-

Y

processor system cannot be predicted. For example, an
external device may only communicate to the microprocessor
under distress circumstances, at which time the microprocessor
must execute a program to compute and output needsd cor-
rection data. When the external device's need for access
to the microprocessor system cannot be predicted, an inter-
rupt is the only reasonable way in which the external device
can gain control of the microprocessor system.

8.2.1 The Interrupt Sequence

Each 3851 PSU in an F8 microprocessor systern has an
external interrupt line, as does tha 3853 SMI device, if present.

The sequence of events surrounding an interrupt is as follows:

1) For interrupts to be processed, interrupts must be
enabled within the 3850 CPU and at the device re-
ceiving the interrupt request signal. At the 3850 CPU,
all interrupts are enabled or disabled. At each 3851
or 3853 device, the individual interrupt line at that
device is enabled or disabled, This is described in
Section 8.2.2,

2} More than one device may simultaneously request to
interrupt the 3850 CPU; that is, interrupt requast sig-
nals may be true, simultaneously, at more than one
device. When this happens, priorities are arbitrated
as dascribed in Section 8.2.3,

3} When a valid interrupt request signal is detected bythe
3850 CPU, it ceases current program execution at the
conclusion of the instruction currently being exscuted.
(Certain instructions are exempt, as described below.)

4) The 3850 CPU sends out an interrupt acknowledge
signal. The way in which this signal is trappad imple-
ments interrupt priority when more than one interrupt
request line is true, as described in Step 2.

5) When the 3850 CPU sends out an interrupt acknowi-
edge signal, it ¢clears the interrupt enable status within
the 3850 CPU, thus disabling all subsequentinterrupts.
As described in Section 8.2.4, interrupts must be
re-enabled, under program control, when such a step
is appropriate to program logic.

6) Each device that has an interrupt request fine also has
@ 18-bit address register which holds the address of
the first instruction to be executed following the inter-
rupt, The 3851 address register is a non-programmable
mask option. The 3853 address register is made up
of two 170 ports which are loaded with an address by
appropriate 1/0 instructions. As described in Section
8.2.4, bit 7 of the interrupt address will always be 1
for an external interrupt, and will always be 0 for a
local timer interrupt,

The device that traps the interrupt acknowledge sig-
nal output in step 5 responds by transmitting the
contants of its interrupt address register as the next
contents of PCO registers.

7) PSU and MI logic, under CPU control, moves the ¢on-
tents of PCO to PC1, then loads the address from step 6
fnto PCO; thus & program dedicated to the acknowl-
edged interrupt request line is executed.

An interrupt will not be acknowledged at the conclusion of
any of the following instructions:

PK

Pl

POP

JMP

OUTS {if not port O or 1}
OUT (if not port O or 1)
El
LR W.J

An instruction other than one of the above must be executed
before an interrupt will be acknawledged.

When power is first turned on, interrupts are disabled.

8.2.2 Enabling and Disabling Interrupts

As described in Section 2.4.3, bit 4 of the 3850 CPU W reg-
ister is an Interrupt Control bit. When this bit is set to 1,
interrupt requests to the CPU are enabled; when this bit is
reset to 0, no interrupt request to the CPU will be acknowl-
edged. ICB is set to 1 by the El instruction or by a LR W.J
instruction; it is reset to O by the DI instruction or by a
LR W.,J instruction.

Individual interrupt request lines are controlied at each de-
vice via an |/0 port which is set aside as an interrupt control
buffer.

For the 38561 PSU's, the interrupt control 170 port addrass is
B oooox 107 xoxxx is the 170 port select code, which may be
any number from 1 to H'3F". The 3863 interrupt control 170
port address must be H'OE’. This address is also available on
a 3851 PSU: when xooox is H'03, the 3851 interrupt control
1/0 port address becomes H'OE’.:

Bxxoox10° = B'OO0O1110" =

When a 3863 SMi device is present, a 3851 PSU with a chip
select of H'O3' cannot also be present.

HOE" .

The following two instructions load the interrupt control
1/0 port:

]
out

VAL
IPRT

IPRT must be equated to the interrupt control /O portaddress.

VAL must be equated as shown in Table 8-1.

Value VAL is
equated to Effect

H OO’ Interrupts disabled at this device.

HO1' External interrupt enabled, timer interrupt
disabled.

H'02’ Interrupts disabled at this device {same as
H'QO").

H"03" External interrupts disabled, timer interrupt
enabled.

Table 8-1. Contents of Interrupt Control 10 Ports

Timer interrupts are described in Section 8.4.

8.2.3 Interrupt Priorities

When an F8 microprocessor system has more than one in-
terrupt line, priorities are determined on the basis of “daisy
chaining”, as illustrated in Figure 8-1.

IREQ
3860 3861 3851 3863 ETC
CPU PSU PSU sMI .
PIN POUT PIN POUT PIN

IREQ = COMMON INTERRUPT REQUEST LINE

PIN = PRIORITY IN (INTERRUPT ACKNOWLEDGE}

POUT = PRIORITY OUT {INTERRUPT ACKNOWLEDGE!)

EACH DEVICE RECEIVING PIN PASSES THE SIGNAL ON AS POUT,
UNLESS IT 1S REQUESTING AN INTERRUPT, IN WHICH CASE IT TRAPS PIN.

Fig. 8-1. Daisy Chaining and Interrupt Priority Determination
The daisy chain sequence is a hardware feature of an F8 micro-
procassor system; when the system is configured, the inter-
rupt acknowledge signal from the CPU is chained from one
device to the next. This determines interrupt priorities.

The only thing a programmer can do to modify interrupt pri-
arities is to disable external interrupts at selected devices by
appropriately loading the interrupt control 170 port at that
device with some value other than H'01". {See Section 8.2.2
and Table 8-1.)

It should be clearly understood that interrupt priorities, as
described in this section, apply only to interrupt request
signals competing for the 3850 CPU's next interrupt service,

There is nothing to pravent an interrupt from interrupting a
previous interrupt; however, this type of nested priority is a
function of how programs have been written. Once an in-
terrupt has been acknowledged and is being serviced, and
the ICB bit in the CPU is set to 1, the current intarrupt sesvice
routine can itself be interrupted.

In order to prevent an interrupt service routine from being
itself interrupted, the ICB bit in the CPU W register must be
left at zero until the interrupt service routine has completed
axecution.

Figure 8-2 illustrates the concept of nested interrupts.

FIRST INTERRUPT

MAIN PROGRAM MAIN PROGRAM

CONTINUED

SEGOND
INTERRUPT

FIRST INTERRUPT
SERVICE ROUTINE

~~_

SECOND INTERRUPT
P SERVICE ROUTINE

D = INTERRUPTS DISABLED {ICB = 0
| = INTERRUPTS ENABLED BY FIRST INTERRUPT
EERVICE ROUTINE (ICE = 1)

Fig. 8-2. Two Levels of Interrupt

The 3853 SMI device will not pass on an interrupt acknowl-
edge signal; therefore, it must be at the end of the daisy
chain, and will have lowest interrupt priority.

B.2.4 Program Response to an Interrupt

There are three program steps which may be needed prior
to &n interrupt in order to prepare to receive interrupts. They
are; :

1} If a 38563 SMI device is present, the interrupt address
register of the 3853 must be loaded with the address
of the first instruction to be executed after an inter-
rupt from the 3853 is acknowledged. As described in
Sections 2.7 and 6.186, 1/0 port addresses H'0C' and
H'OD" have been reserved for the upper and lower
interrupt address bytes, respectively; therefore the
post-interrupt execution address can be loaded as

follows:
LI ADHI
ouUTSs HOC
L ADLO
OuUTs HOD’

ADHI and ADLO are symbols which must be equated
to the high and low bytes of the selected execution
address. Nota that the 3851 PSU has the post-
interrupt execution address as a permanant feature
of the chip mask; therefore, each 3851 PSU has a
fixed post-interrupt execution address associated
with it.

2} Interrupts must be selectively enabled or disabled at
3861 and 3853 interrupt control ports, as described
in Section 8.2.3.

3) The 3850 CPU master interrupt enable bit {ICB) must
be set to 1, as described in Section 8.2.3.

When an interrupt is acknowledged, events within the 3850
CPU proceed exactly as if a subroutine had just been called;
the content of PCO is moved to PC1, and the content of the
selected device's post-interrupt address register is moved to
PCO. Interrupts should therefore be handled as though a
subroutine had just been executed, as described in Section
7.3. For example, the first instructions executed following
an interrupt might be;

LR K.P SAVE CONTINUATION
ADDRESS IN K
Pt CALL SAVE CONTINUATION

ADDRESS IN STACK

Returning from an interrupt to the interrupted program is
identical to returning from a subroutine to the calling pro-
gram; however, since a program may be interrupted any time
interrupts have been enabled, parameter passing and multi-
ple returns do not apply to post-interrupt programs and should
not be used.

Remember that the first interrupt service routine must enable
ICB if second level interrupts are to be allowed {as illustrated
in Figure 8-2).

8-5

8.2.5 Making 3851 PSU Interrupt Address
Programmable

The fact that the 3851 PSU's interrupt address is a permanent
feature of the device is not a problem in applications where
this address may have to be varied. Using a branch tabie (as
described in Section 7.5), a numbaer of possible post-interrupt
service routine execution addresses may be maintained. The
following routine shows how an external device may use a
PSU 170 port to provide an index identifying the service rou-
tine which must be executed following the interrupt. 1/0
port 4 has been arbitrarily selected as the 1/0 port address.
The data byte at |/0 port 4 selects an address from a branch
table, as follows:

*POST INTERRUPT SERVICE ROUTINE FOR PSU 1

RC1I LR K.P SAVE RETURN ADDRESS ON
THE STACK
Pl CALL
INS 4 INPUT PROGRAM SELECT
BYTE
LR RX SAVE INDEX VALUE
Pl BRANCH CALL BRANCH TABLE SUB-

ROUTINE

8.2.6 Simple I/0 interrupts

In Section 8.1.2, a simple application was described, where
data is input at a keyboard and recorded in 258 byte records
on a cassette.

A cassette may record data at a rate of approximately 200
bytes/second. With time taken to start and stop the cassette,
two or three seconds may elapse each time a record is out-
put to the cassette. Preventing data from being input at the
keybeard while it is being output to a cassette is both incon-
venient and unnecessary. Simple 170 interrupts may be used
to output data to the cassette, byte-by-byte. These few
instructions are sufficient to service each interrupt.

*PROGRAM TO WRITE ONE BYTE TO A CASSETTE, FOLLOW-
*ING AN INTERRUPT

CRwW LM LOAD NEXT BYTE
ADDRESSED BY DCO
out CASS OUTPUT TO CASSETTE
El
POP RETURN FROM INTERRUPT

The key concept here is that the F8 is uniquely suited to pro-
cessing a large number of simple interrupts. If the post-
intarrupt program will not itseif be interrupted, and if it will
call no subroutines, then merely ending it with & POP in-
struction turns it into a complete interrupt service routing.
Do not save the return address in the stack: do not call any
starting or ending subroutines {e.qg., CALL or RTRN).

For example, see Section 2.8.7.

8.2.7 A Sample Program

Figure 8-3 illustrates a configuration for the key to cassette
application described in Section 8.1.2, except that 32 byte
records are to be written to the cassette.

—

3850
cPU

3881

FORT
7

PSU
DEVICE SELECT
B DO0R00"

PORT
]

INTERRUPT
= CONTROL

1o
PORT &

I/ I 1o

! A0 PORT BELECT
FORT O PORT 1 '

1/
FORT 4 l ‘DR

ETATUS FROM
KEYBOARLD STATUS FRGM CASSETTE,

CONTROLS TO CASSETTE

DATA FROM
KEYBODARD

L —— ——a DATA TO CASSETTE

INTERRUFT FROM
CASSETTE

Fig. 8-3. Two Devices Servicing a Keyboard to Cassatte
Application

*PROGRAM TO RECEIVE DATA FROM THE KEYBOARD USING
*PROGRAMMED 170

*SCRATCHPAD BYTES 0°40°' TO O°77' MAKE UPTHE 32 BYTE
*BUFFER,

*SCRATCHPAD BYTES 0°20° TO 0'37° ARE USED AS ATEM-
*PORARY BUFFER TO HOLD DATA WHILE THE MAIN BUFFER
*1S BEING WRITTEN TO CASSETTE

ORG H'0000
START LISV 3 INITIALIZE ISAR TO
S1 LISL 7 TEMPORARY BUFFER
s2 LIS H'O1” ENABLE EXTERNAL INTER-
RUPTS AT PSU
outTs 6
El ENABLE INTERRUPTS
53 o INKB INPUT NEXT EIGHT BYTES
FROM KEYBOARD
55 LIsu 2 DECREMENT UPPER DIGIT
OF ISAR
S6 Pl INKB INPUT NEXT EIGHT BYTES

FROM KEYBOARD
*AFTER INPUTTING 16 BYTES FROM THE KEYBOARD, IT 1S
*ASSUMED THAT ANY RECORD QUTPUT TO THE CASSETTE
*IS COMPLETE. MOVE DATA FROM 0’37 - 0°20'TO Q77" -

Q60"
58 LISL 7 LOAD FIRST SOURCE BYTE
ADDRESS
59 LISU 3
810 LR AS LOAD NEXT BYTE
519 LIsu 7
§12 LR D.A STORE NEXT BYTE
513 BR7 59 IF NOT END OF BUFFER,
RETURN FOR NEXT BYTE
514 LISV 2 IF END OF FIRST BUFFER,
MOVE SECOND BUFFER
$15 LR A5 REPEAT MOVE FOR SECOND
8 BYTE
LIsU 6 BUFFER
LR D.A
BR7 s14
5186 Lisu 5 INPUT NEXT EIGHT BYTES
FROM KEYBOARD TO
s17 Pl INKB SCRATCHPAD BUFFER O'57

TO 0’50

8-6

519 L'su 4 INPUT NEXT EIGHT BYTES
FROM KEYBOARD TO
520 Pl INKB SCRATCHPAD BUFFER 0’47

TO 0’407

*BUFFER IS NOW READY TO BE QUTPUT TO CASSETTE.

521 L H3F' LOAD BUFFER INITIAL
ADDRESS

8§22 LR 0.A {0°'77") INTO SCRATCHPAD
BYTE O

523 LI ONC TURN CASSETTE ON

524 QuUTS 5

525 BR START RETURN FOR NEXT RECORD

*INPUT SUBROUTINE INKB STORES A BYTE OF DATA INPUT
*FROM KEYBOARD INTO SCRATCHPAD BYTE ADDRESSED
*BY ISAR

INKB LR K.P SAVE RETURN ADDRESS
IN K
LO CLR CLEAR PORT O
outs 0O
LOCP INS 0 INPUT STATUS
L1 BP LOOP
L2 INS 1 INPUT DATA
L2 LR DA STORE IN ISAR BUFFER
BR7 LO RETURN iF NOT EIGHTH BYTE
L4 PK RETURN

*INTERRUPT SERVICE ROUTINE, EXECUTED TO WRITE ONE
*BYTE TO CASSETTE.

i

ORG H'0280°
€0 LR 1A SAVE ACCUMULATOR IN ‘
SCRATCHPAD BYTE 1
E1 LR AIS SAVE ISAR IN SCRATCHPAD
BYTE 2
E2 LR 2,A
€3 LR A0 LOAD SCRATCHPAD BYTE 0
CONTENTS INTO ISAR
E4 LR 1S,A
ES INS 5 RECEIVE STATUS FROM
CASSETTE, INS SETS STATUS
E7 BZ FO
E8 LR AS IF NOT END OF CASSETTE,
E9 ouTsS 4 OUTPUT NEXT BYTE
E10 LR AlS MOVE ISAR TO A
E11 Al H'FF* DECREMENT ALL 6 BITS OF
ADDRESS
E12 Cl 0'37° TEST IF RESULT IS 0’37
E13 BZ E17 RETURN IF NOT
E14 LI STOP IF IT IS, ISSUE A STOP
COMMAND
E15 ouTs 4
€16 L 0’77 RESET TO TOP FOR NEXT
OUTPUT
E17 LR 0.A SAVE ISAR ADDRESS FOR
NEXT BYTE
E18 LR A2 BEFORE RETURNING,
RESTORE ACCUMULATOR
LR IS,A AND ISAR
LR Al
El
POP
FO L REW IF CASSETTE IS FULL, ISSUE .
ouTs 4 REWIND COMMAND
BR E18

*

The logic of this program is refatively simple. Scratchpad
bytes 0’77 to 0’40’ constitute a 32-byte buffer, the contents
of which is output as a record to the cassette, It is assumed
that this record can be written to the cassette in less time
than an operator takes to enter 16 digits at the keyboard.
Therefore instructions START through §7, input 18 digits into
the 16 scratchpad bytes addressed by 0’37’ through 020",

Data is input from the keybeard using programmed 170 via
subroutine INKB. Notice that subroutine INKB saves its return
address in the K seratchpad registers and uses the PK in-
struction to return; therefore a stack register is available for
the interrupt. Subroutine INKB s almost identical to the
input subroutine described in Section 8.1.1. The principle
difference is that separate ports are being used for status
and data. Observe that throughout this program data is input
into scratchpad bytes, one scratchpad 8-byte buffer at a time.

Once 16 digits have been input from the keyboard, they are
moved from scratchpad bytes 0°37° - 3'20" to o777 - 0’60,
This entire data movement will take 208 microseconds which
i$ not a noticeable delay to an operator entering data at the
keyboard.

The next 16 bytes of data entered at the keyboard go diractly
into seratchpad bytes 0’57 through 0’80’ and Q'47* through
040",

After 32 bytes have been entered into the scratchpad buffer,
a buffer counter is initialized in scratchpad byte O {instructions
21 et, seq.) then the cagsette is turned on by instructions
523 and $24. ONC is used as a symbol representing the one
byte code which will be recognized by the cassette control
logic as a turn-on signal. Once the cassette has been turned
on, program logic branches back to the start of data entry
for the next record.

Notice that nowhere in the main program has the interrupt
service routine been mentioned. It ig assumed that once the
cassette has been turned on, cassette control logic will issue
an interrupt request signal each time it is ready to receive
another byte of data from the micraoprocessor. The interrupt
service routine therefore may be executed at any time. it is
as though there werse a floating call to a subroutine that could
randomly be executed at any point in the program where
interrupts were being allowed.

Observe that the interrupt service routine has to save the
contents of the accumulator and the ISAR in scratchpad bytes
because the accumulator and ISAR are going to be needed.

The illustrated interrupt service routine is probably somewhat
simpler than most real interrupt service routines would be.
Control logic associated with the cassette drive is assumed
capable of sending status inputs to the microprocessor telling
the microprocessor when to rewind the cassette. it is also
assumed that housekeeping associated with the start and
end of each record is handled by the cassette control logic,
In all probability much of this housekeeping could be done
by the microprocessor, but to include it in the example would

A detract from the purpose of the example, which is to show

how an interrupt service routine is handled.

The origins of the main program and interrupt service routine
have been randomly selected. Notso that since the origin of
the interrupt service routine has been selected at H'0280",

8-7

this is the address which must be in
address register,

the 3851 interrupt

The symbols STOP and REW in the interrupt service routine
must be equated to the actual bit pattern that the cassette
controller logic will interpret as stop and rewind commands,
respectively.

8.3 LOCAL TIMERS (PROGRAMMABLE
TIMERS)

Programmable timers are a more useful microprocessor
programming tool than is initially apparent to a programmer.

Programmable timers are shift registers which, after being
loaded with some initial value, count down to 0, then send
an interrupt request signal to the CPU. {See Section 2.5.4)
The 3861 PSU and the 3853 SMI device both have program-
mable timers,

Here are some applications for which timers are useful:

1) In control applications, such as an operations monitor
alarm, to insure that some maximum time interval is
not exceeded between consecutive readings from
sensitive data inputs. For example, suppose a tem-
perature must be measured in a chemical reactor at
least once every second to prévent runaway condi-
tions. 253 maximum time intervals on a local timer
approximate 1 second. Whenever g temperature is
input, the local timer is reset to start counting down
one second. if one second is counted down, the pro-
gram can be written to output a signal that triggers
an audible alarm.

2

e

To activate refresh logic for external devices. For ex-
ample, a video display may need to be refreshed at
fixed time intervals: the refresh sequence may be
initiated by a local timer.

3

—

To maintain the real time of day in any system that
has to generate clock times. Such devices include
badge readers and numerous small office business
systems.

8.3.1 Local Timer I/0 Ports

Local timer logic uses the local interrupt control 1./0 ports to
enable local timer interrupts, as described in Section 8.2.2
and Table 8-1,

The interrupt control 1/0O port must have the value H'03’ loaded
into it under program control in order to enable local timer
interrupts at that one device. Therefore either external inter-
rupts or local timer interrupts, but not both, may be enabled
at one device.

If interrupts have bean disabled at the 3850 CPU, local timer
interrupt requests will be ignored until a subsequent inter-
rupt enable. At this time any interrupt request will still ba
active unless cleared prior to the interrupt enable.

The timer 170 ports have 1/0 port addresses one higher than
the local interrupt control 1/0 port. Therefore 3851 PSU port
addresses are:

B oooxx10”
Bhowoox1 17

for the local interrupt control 1/0 port
for the iocal timer 1/0 port

For the 3853 SMI, port addresses are:

H*OE"
HOF’

for the local interrupt control /0 port
for the local timer 170 port

8.3.2 Programming Local Timers

Programming & local timer requires the value H'03" 1o be
loaded into the selected device’s local interrupt control /0
port. A number between O and 254, identified as a timer
constant, is loaded into the associated local timer |/0 port.
A value of 255 loaded into the local timer /0 port stops the
clock.

The value loaded into a local timer, as a timer constant, is
converted (by the assembler) to a binary value, as given in
Appendix C; that is why numbers should be entered as timer
constants.

A local timer interrupt will be generatad after the time interval
given by the product:

{(system clock pulse interval) * {local timer constant) * 31
For example, a value of T°200' loaded into a local timer 170

port will generate an interrupt after 3.1 ms if the system
clock pulse interval is 500 ns.

instructions needed to enable a local timer are as follows:

LI T'200° LOAD TIMER CONSTANT

outs 7 OUTPUTTOTIMER IO PORT 7

LIS 3 LOAD TIMER INITIATION
CONTROL

OUTS B OUTPUT TO CONTROL 170
PORT 6

El ENABLE INTERRUPTS AT

THE 3850 CPU

In the above example, the timer constant T'200" has been
arbitrarily selected. Any value from T'0" to T'266" could be
used. T°256°, remembaer, will stop the clock.

The selection of 170 ports 7 and B is also arbitrary; any pair
of 1/Q ports with addresses given in Section 8.3.1 could be
used. Note, however, that the contral [/O port number is
always one less than the timer port number it controls.

8-8

The value H'03' must be loaded into a local timer control 10
port if the associated timer port is to operate. When this
value is lgaded into the control 1/0 port any pending timer
interrupt is cleared. Any subsequent zero value of the timer
will set the timer interrupt.

If the value H'O3' is in the control 170 port befora the timer
constant is output to the timer 1/Q port, then the timer which
is constantly running may interrupt before being set with a
timer constant. Once the timer 1/0 port holds a zero value,
an interrupt request signal will be generated once every
3.953 ms (for a 500 ns clock pulse). Providing the ICB bit
is 1 within the 3850 CPU, every timer interrupt request will
be acknowledged and serviced if the timar interrupt is enabled.

The program that is executed after a timer interrupt is acknowl-
edged is a service routine which, like the service routing il-
lustrated in Section 8.2.7, is never called or referenced by
any other program. The service routine must start executing
at the memory address provided by the 3851 or 3853 device's
interrupt address 1/0 ports; howaever, recall that the 7 bit of
the address is automatically set to O for a timer interrupt, or
to 1 for an external interrupt. if the external interrupt service
routine is origined at H'0680", as illustrated in Section 8.2.7,
then for the same device, the local timer interrupt service
routine will be origined at H'0600".

8.3.3 A Programming Example — The Time of Day

The program below creates the time of day by storing hours
in scratchpad byte 8, minutes in scratchpad byte 7 and sec-
onds in scratchpad byte 8. Scratchpad byte b is used as a
counter.

This program uses the maximum timer interval {3.953 ms
between interrupts). The local timer must be initialized with
the main program as follows:

LIS 0 ZERO HOURS, MINUTES AND

LR 8.A SECONDS PORTS, ASSUM-

LR 1A ING THE DEVICE WILL BE

LR 6.A SWITCHED ON EXACTLY AT
MIDNIGHT

u 253 INITIALIZE THE LOCAL

LR 5.4 COUNTER TC 2563

LI TO CLEAR LOCAL TIMER PORT

outrs 7

LIS H'03" ENABLE THE LOCAL TIMER

ouUTS 6 PORT INTERRUPTS

El ENABLE INTERRUPTS AT

THE CPU

The local timer interrupt service routine is assumed to be
origined at H'0200". It executes as follows:

ORG H‘0200

DS 5 DECREMENT THE LOCAL
COUNTER

BNZ ouT CONTINUE IF IT1S NOT ZERD
(ONE 3EC).

L1 253 IF IT IS ZERQ, RESET TO 253

LR 5.A

LR A6 INCREMENT THE SECONDS
COUNTER

INC

Cl 60 TEST IF SECONDS EQUAL 60

B2 T10 IF THEY DO, ADJUST

MINUTES

LR 6,A IF THEY DO NOT, END
ouTt El

POP
*MINUTES ADJUST BEGINS HERE
T10 LiS o ZERQ SECONDS

LR 6.A

LR A7 LOAD MINUTES

INC INCREMENT MINUTES

c 60 TEST FOR 60 MINUTES
BZ T20 AT 60 MINUTES, ADJUST
LR 7.A HOURS OTHERWISE RETURN
MINUTES
El
POP
*HOURS ADJUST BEGINS HERE
T20 LIS 0 ZERO MINUTES
LR TA
L 153 CORRECT 0.392 SECOND
ERROR EVERY HOUR
LR B.A
LR A8 LOAD HOURS
INC INCREMENT HOURS
cl 24 TEST FOR 24 HOURS
BNZ T30 AT 24 HOURS, RESET TO 0
LIs 0 OTHERWISE RETURN HOURS
T30 LR 8.A
El
POP

8.4 DIRECT MEMORY ACCESS

Direct mamory access (DMA) allows data to be transferred
betwean any F8 microprocessor system memory and an ex-
ternal device, bypassing the 3850 CPU. Data is transferred
tn parallel with any CPU operations. DMA has been described,
8s & concept, in Sections 2.6.3 and 2.8,

One 3852 DMI device must be present in 8 microprocessor
system that supports DMA. Up to four 3854 DMA devices
may be present in the system; each 3854 DMA device
provides one DMA, channel.

8.4.1 When to Use DMA

DMA is used to transfer data into, or out of, a microprocessor
system that has heavy 1/0 requirements. For example, using
programmed 1/0, the theoretically maximum data transfer
rate is implemented by the following instruction sequence
for data input;

LoOP INS o INPUT A DATA BYTE VIA

PORT O

ST STORE IN RAM MEMORY

DS 1 TEST FOR END OF TRANS-
MISSION

BNZ LOOP RETURN FOR NEXT CHAR-
ACTER

Scratchpad register 1 is assumed to hold the initial character
count.

These four instructions execute in 9.5 instruction cycles, equal
to 19 us, using a 500 ns clock pulse. Assuming that external
fogic is synchronized to input one byte of data every 13 us,
the maximum data transfer rate is approximately 50,000
bytes/second.

The maximum data transfer rate supported by prograrnmed
170 is not of itself a limiting factor, A 258 byte buffer, for
example, can be transferrad in 4.86 ms. The problem is that
this maxirmum data transfer rate requires external logic that
processes data at a rate of one byte every 19 us. Most ap-
plications will not meet this requirement, usually because
data transfer rates are set by logic considerations beyond
the microprocessor system; that is, external logic determines
data transfer rates, not the microprocessor system.

Suppose external logic is inputting data to the microprocessor
system at some rate, which we will label R bytes/second,
The time that elapses between sach byte transfarred will be
{1,000,000/R} us. The local timer can be used to generate
an interrupt shortly before each byte of data is due, in which
case the local timer interrupt service routine will input the
data byte. Assuming that data will always be in the 1/0 port
before the local timer interrupt service routine is executed,
the following service routine will input data bytes from an
170 port:

ISRI LR 0.A SAVE ACCUMULATOR
CONTENTS IN O
XDC SWITCH DCO AND DC1
LI TCNT RESTART TIMER
outs 7
INS o INPUT DATA BYTE

sT SAVE IN MEMORY

xDC SWITCH DCO AND DC1

LR AD RESTORE ACCUMULATOR
FROM O

El ENABLE INTERRUPTS

POP RETURN

TCNT is a symbol defined by the equate directive:

TNCT EQU TWAL'
where VAL is a number between 0 and 255. Each count
represents 31 clock periods and the total time is equal to

{1,000,000/R) but less than 3.953 ms.

It will take approximately 38 us for interrupt service routine
ISRI to execute; this means that approximately 8.7 ms will
be required to input 256 bytes of data. This 9.7 ms will be
spread aover whatever time interval the external device re-
quires to transfer 256 bytes of data. But there are some
problems associated with the method of inputting data:

T} Recali that there are certain privileged instructions
which inhibit acknowledgement of an interrupt. It is
quite feasible for a 2 to 4 us delay to randomly get
inserted between each execution of ISRI if, by chance,
a privileged instruction is being executed at the instant
the local timer times out. Over 256 bytes of data trans-
fer, this means that it is feasible for a 500 ¢s slew to
develop, which will result in the loss of a byte of data,
if the data transfer rate exceeds 2,000 bytes/s.

2) If the microprocessor is handling interrupts other
than the local timer, clearly other interrupts must be
serviced by routines which are themselves interrupt-
able, since one interrupt service routine blocking out
ISRI for any significant period of time would almost
certainly create irrecoverable timing errors.

3) Observe that 1SR uses the DC1 regisier and uses one are given in Table 2-2 for the four 3864 DMA devices

scratchpad register to store accumulator contents. that may be present in an £8 microprocessor system.
This means that the DC1 register and the scratchpad Whether a DMA device uses the first, second, third
register cannot be used by any other program that or fourth set of addresses is a function of device hard-
is being executed during the same time period. ware configuration and of no concern to the program- ﬂ

mer, so long as the correct port addresses are used.

If subroutine ISR! is expanded to include a status test plus 2) ADLO and ADHI! represent the low order and high
logic to compute the timer constant that will compensate order bytes of the baginning address of the memory
for timing slews, the new expanded version of 1SRl might puffer into which data will be written, or from which
easily take 200 us 1o execute. Under these circumstances data will be read.
the microprocessor system would spend a significant amount
of its time merely moving data between memory and an 3) Data buffers may be up to 4,096 bytes long. CTLO
170 port. represents the low order eight bits of the buffer length,
as illustrated in Figure 8-4. CTRL provides the conrols
{n all but the simplest 1/0 transfer applications, therefore, which select DMA options and also the high order four
DMA becomes the preferable way of moving data betwean bits of the buffer length, as illustrated in Figure 8-4.
memory and external devices.
8.4.2 Programming DMA The following instructions will initiate 256 bytes of data being
written into a memory puffer, where the data rate is con-
The actual programming steps required in order to initiate a wrolled by the external device. The memory buffer starting
DMA operation are simple, as follows!: address is H'A280". The first DMA channel is used.
L! ADLO LOAD BUFFER STARTING —
ouT BUFA ADDRESS INTO ADDRESS —
1/0 PORTS —
Ll ADHI Lk H'80% OUTPUT LOW ORDER BYTE
out BUFB OF ADDRESS
LI CTLO LOAD LOW ORDER BYTE OF ouT H'FO'
BYTE COUNT LI H'AZ' OUTPUT HIGH ORDER BYTE
ouT BUFC OF ADDRESS
LI CTRL LOAD HIGH ORDER 4 BITS ouTt H'F1’ '
OF BYTE COUNT LI H0O" OUTPUT LOW ORDER BYTE
QuT BUFD PLUS CONTROL BITS OF COUNT
out H'F2’
Symbols must be equated as follows: LI H'C1’ OUTPUT HIGH ORDER 4
DIGITS OF COUNT (1)
1} The 1/0 port addresses, BUFA. BUFB, BUFC and BUFD ouT H'F3’ AND CONTROL DIGIT (C).
1/0 PORT BUFD 1/0 PORT BUFC
?6543210 7854321OBitNo,
k. —’
i ~

Buffer Length

0 - External device controls data transfer rate.

1 - A byte of data will be transferred every available
DMA slot.

O - Data transfer halts whan the byte count register
decrements to 0.

1 - Data transfer continues until bit 7 is reset to 0.

0 - Data is transferred from memory to an external device.

1 Data is transferred from an external device to main

memory.
Q - Halt DMA operation
1

- Start DMA gperation

Fig. 8-4. How BUFC and BUFD are used to Control DMA Operations

8-10

P

P

8.4.3 Catching DMA on the Fly

There are many applications in which data will be transferred
via DMA at unpredictable rates. For example, in communi-
cations applications, data may come over a telephone line at
a fixed baud rate, but the length of messages and the period
when no data is being transferred may be completely random.
Under such circumstances it is very usaeful if a program can
start and stop DMA operations or interrogate the buffer counter
to find out how much data has been transferred via DMA
since tha last interrogation. The following program sequence
catches DMA on the fly, in a way that would be well suited
to random data transfer rates in communications applications:

*SUBROUTINE TO iNITIALIZE DMA WITH H'FF’ IN THE BYTE
*COUNTER. THE DATA BUFFER STARTS AT H'2000’

DMA Li H'00" OUTPUT BUFFER STARTING
ADDRESS
ourt H'FO*
U H20
ouT HF1’
LI HFF* OUTPUT BYTE COUNTER
ouT H'F2
i H'CO’
52 ouTt H'F3’
POP

*MAIN PROGRAM TO HANDLE COMMUNICATIONS DATA
*TRANSFERRED VIA DMA,

Pl DMA INITIALIZE DMA
M1 LIS 0 STOP DMA DATA TRANSFER
M2 out H'F3’
M3 IN H'F2’ LOAD BYTE COUNT INTO
COM SCRATCHPAD BYTE O
M4 LR 0.A

{instructions to process data follow here)

8-11

Instruction steps to initiate DMA are packaged as a subrou-
tine labeled DMA. The buffer length output is H'FF’. As this
buffer length is counted down, the number of bytes trans-
ferred via DMA can, at any time, be determined by reading
the contents of {0 port F2 into the accumulator and com-
plementing. The control digit C starts data flow via DMA from
the externai device (assumed 1o be a communications
interface} to the memory buffer, beginning at H'2000".

The main program starts by initializing DMA via a call to
subroutine DMA. At some later point in the program, in-
structions M1 and M2 are executed in order to load the code
digit O into | /O port F3 and thus stop DMA transfers. Instruc-
tions M3 through M4 determine the number of bytes that
have been transferred via DMA, since DMA was initiated,
and loads this byte count into scratchpad register 0. Instruc-
tions will now follow to move the number of bytes received
to some other memory location where the data can be pro-
cessad. Subroutine DMA will then be recalled to re-initialize
DMA data transfers. After data has been processed exacution
will branch back to instruction M1 and so the program will
continue processing whatever data has bean transferred in
each time interval.

"

PROGRAM OPTIMIZATION

Optimizing a program is not a routine mechanical task; rather,
it is a function of application requirements and hardware
configuration. Most microprocessor programs are written
either to maximize execution speed, or to minimize the
amount of memory used.

Consider a simpie example. A microprocessor has 1024 bytes
of program memory. An application may only use half of the
available memory, but may be too slow to meet product speci-
fications. Converting every subroutine to a macro will speed
up program execution time, but may doubie the size of the
program. Since program memory comes in finita increments,
economizing on program storage requirements is only mean-
ingful when it reduces the number of devices required by a
microprocessor system; therefore, increasing program stor-
age requirements from 500 bytes to TQ00 bytes carries no

penalty.

In practice, programming for minimum use of program stor-
age should be the goal of microprocessor programmers.
Microprocessor instruction sets are very versatile, Many
variations of a program can he written to implement any
problem; but some programs will be more efficient than
others. A novice microprocessor programmer may well write
programs that occupy 50% more memory than is really neces-
sary. inefficiencies of this type are not important in mini-
computer systems, which usually include buik storage devices
such as disk units. The only penalty paid for having unneces-
sarily long programs is a few extra milliseconds, making
otherwise unnecessary transfers of program segments be-
tween disk and memory. Unnecessarily long programs are
very uneconomical in microprocessor systems, where the
entire program sits in one or more memory devices. If a
micraprocessor system has two more memory devices than
the most compact pragram wauld require, these two memory
devices can become 20,000 memory devices, if the micro-
processor system is to be reproduced 10,000 times.

In many ways, the logic designer will find it easier to be-
come an efficient microprocessor programmer than will a
systems analyst, who has gained experience programming
minicomputers and larger systems. The systems analyst has
continuously striven to write programs which are general
purpose. For example, a subroutine that performs multibyte
addition must be able to add twe number buffers of any length,
focated anywhere in memory, storing the result in a third
number buffer. Such a multibyte addition subroutine, once
written, could be frequently reused in almost any applica-
tion, thus reducing future programming expenses. This is
economical thinking in the world of minicomputers, but it
is very uneconomical thinking in the world of microprocessors.
A microprocessor application may be able to define two
number buffers of specific length, in spacific areas of memary,
as the only number buffers which will ever be involved in
mathematical operations. A multibyte addition subroutine,
working within these restrictions, may have to be rewritten
for every new microprocessor application, but the subroutine
that results may use less than half of the memory storage
rsquirements demanded by the equivalent general purpose
routine. When microprocessor systems are likely to be re-
produced tens of thousands of times, extra front-end pro-
gremming expense becomes trivial compared to the cost of
extra memory devices, multiplied ten thousand fold.

In the following sub-sections, program optimization informa-
tion is presented in the following sequence:

1} The concept of counting memory bytes and execution
cycles is described.

2} Some basic techniques that will always make F8
programs more efficient are listed.

3} Some examples of execution speed versus memory
utilization tradeoffs are given.

9.1 COUNTING CYCLES AND BYTES

The F8 instruction set is summarized in Appendix D, where the
number of object program bytes is listed for every instruction.

Consider the data movement program described in Figure
5-1. This program is reproduced in Figure 9-1, along with
number of execution cycles and memory bytes required by
each instruction.

Counting bytes is usually unnecessary, since the assembler
listing prints the memory location where each object pro-
gram byte will be stored. Thus subtracting memory addresses
yields the length of any program, program segment or
subroutine.

8.2 ELEMENTARY OPTIMIZATION
TECHNIQUES

There are a number of instruction choices where one selec-

tion is always preferable. These cbvious instruction choices

are described in the following sub-sections.

9.2.1 Scratchpad and RAM Memory

Always fill up the scratchpad before using RAM memory to
store constants or data buffers. It takes one cycle to move a
byte of data between the accumulator and a scratchpad byte;
it takes 2.5 cycles to move a byte of data between the accu-
mulator and external RAM. Both sets of instructions generate
one byte of object code,

922

Immediats instructions are 2 or 3-byte instructions that spec-
ify data in the instruction operand.

Immediate Instructions

Consider the 2-byte immediate instructions; these instruc-
tions specify a 1-byte operand, which is combinad with the
contents of the accumulator in some way. An instruction
such as:

CNT LOAD COUNTER INTO
ACCUMULATOR

IM LF

executes in 2.5 cycles and occupies two bytes of memory. if
this instruction occurs tdentically {with the same operand)
many times in a program, consider loading CNT into a scratch-
pad register, as follows:

ONE LI CNT
TWO LR 1.A
THRE LR Al £OAD COUNTER INTO

ACCUMULATOR

I

Cycles Bytes

0 0 TITLE
a Q MAXCPU 50
0 0 SYMBOL
0 0 XREF
o) o BASE HEX
0 0 BUFA EQU HO800
¢ O BUFB EQU H'08A0"
0 o] ORG H 100
6 3 ONE DCl BUFA
2 1 TWO XDC
6 3 THREE DCI BUFB
2.5 2 FOUR U H'80*
1 1 FIVE LR 1,5
2.5 1 LOOP LM
2 1 SIX XoC
2.5 1 SEVEN 5T
2 1 EIGHT XDC
1.5 1 NINE DS 1
3.5 2 BNZ LOOP

o 0 END

3156 17

* BNZ will usually return 10 LOOP

Total Bytes = 17
Total Cycles = 31.5
Total Cycles within iterative toop = 14

~SAMPLE PROGRAM TO MOVE DATA BETWEEN BUFFERS"’

LIMIT OF 560 SECONDS CPU TIME SPECIFIED

A SYMBOL TABLE WILL FOLLOW SOQURCE PROGRAM
SYMBOLS CROSS LISTING WILL FOLLOW SOURCE PROGRAM
HEXADECIMAL NUMBERS SPECIFIED FOR ASSEMBLY LISTING
SET THE VALUE OF SYMBOL BUFA

SET THE VALUE OF SYMBOL BUFB

SET DCO TO BUFA STARTING ADDRESS

STORE IN DC1

SET DCO TO BUFB STARTING ADDRESS

LOAD BUFFER LENGTH INTO ACCUMULATOR

SAVE BUFFER LENGTH IN SCRATCHPAD B8YTE 1

LOAD CONTENTS OF MEMORY BYTE ADDRESSED BY DCO
EXCHANGE DCO AND DC1

STORE ACCUMULATOR IN MEMORY BYTE ADDRESSED BY DCO
EXCHANGE DCO AND DC1

DECREMENT SCRATCHPAD BYTE 1

\F SCRATCHPAD BYTE 1 IS NOT ZERO, RETURN TO LOOP

Assuming 2 us cycle time, time to move 128 byies = 2%(14%128+17.5}
= 3619 us

Fig. 8-1. Counting Cycles and Bytas

Instructions ONE and TWO execute in 3.5 cycles and occupy
three bytes of memory. Instruction THRE executes in one
cycle, occupies one byte of memory and replaces instruction IM.

Clearly instruction 1M is better than ONE, TWO and THRE, if
1M occurs just once; however, if instruction IM occurs iden-
tically n timas, then it accumulates 2.6n cycles and 2n bytes
of memory, whereas ONE, TWO and THRE accumulate {3.5+n)
cycles and (3+n) bytes of memory, respectively. Therefore
ONE, TWO and THRE will execute faster when;

25n>3b+n
or 1.5n>3.5
or n>2.33

ONE, TWO and THRE occupy less memory when:

2n> (3 +n}
or n>3

In conclusion, if a 2-byte immediate instruction ocours iden-
tically {same operand) three or more timas in a program, it
is more afficient to load the immediate operand into ascratch-
pad byte out of which it is referenced {providing a scratchpad
byte is available).

9.2.3 Short Instructions

Always go over a source program, making sure that the short
instructions LIS, INS and OUTS have been used wherever
the operand is small enough.

9-2

9.2.4 Use of DS Instruction to Decrement and Test

Recall that when a D$ instruction is used, the decremented
scratchpad byte may be tested for “decrement-from-zero”,

Since the DS instruction adds H'FF’ to the designated scratch-
pad byte contents, the carry status will always be set unless
the scratchpad byte contained O before it was decremented.
Therefore the instruction sequence:

DS n
BC BACK

will decremant scratchpad byte n, return to BACK if byte n
did not contain 0, but continue if byte n did contain 0.

9.2.5 Use of the BR7 Instruction

The BR7 instruction is very useful when manipulating data
buffers in scratchpad memory, as described in Section 7.1,

9.3 PROGRAMMING FOR SPEED OR MEMORY
ECONOMY

In the following subsections, programming techniques that

tradeoff between execution speed and the amount of memory

used are described.

9.3.1 Macros and Subroutines

To gain execution speed, possibly with a heavy increase in
the amount of memory required, convert subroutines into
macros as described in Section 7.4,

e N

¢

e

Always carefully examine subroutines, particularly those
which are infrequently called or receive parameters from the
calling program, to see if converting the subroutine into a
macro would save memory bytes and, at the same time,
increase execution speed.

As described in Section 7.3, programs can be made much
faster and will require less memory if subroutine nesting is
fimited to a first level. f a main program calls a subroutine,
the subroutine can then call another subrouting. However,
a subroutine cannot call another subroutine if it was, itself,
called by a subroutine. Limiting subroutine nesting tc a level
of one means that return addresses can be stored in the
stack register (PC1) and in the K registers of the scratchpad,
eliminating the need for memory stacks.

9.3.2 Table Lookups Versus Data Manipulation

Program execution speed can frequently be increased by
looking up data out of tables in ROM.

The concept is illustrated below, for the simple case of a 1-
of-8 decoder.

An octal digit is input into the low order three bits of 1/0 port
0. The CPU must output, via 1/0 port 1, a data byts as follows:

Input From Port O Qutput At Port 1

00000001 00000001
00000010 00000010
00000011 00000100
00000100 00001000
00000110 00100000
000600111 01000000
00000000 10000000
*ONE OF EIGHT DECODER PROGRAM, NOT USING TABLE
*LOOKUP
INS o INPUT OCTAL CODE
BNZ no INPUT IS NOT ZERO
LIS 8 LOOP COUNTER
1o LR 0.A TO LOOP COUNTER
LIS 1 LOAD OUTPUT FOR 1
LooP DS a DECREMENT INPUT
BZ ouTt BRANCH OUT IF END
SL 1 SHIFT LEFT ONE BIT IF
NOT END
BR LOOP
ouT ouTts 1 OUTPUT RESULT

9-3

*ONE OF EIGHT DECODER PROGRAM USING TABLE
*LOOKUPS

LKUP DC o

Dc 2

DC 4

DC 8

DC 16

DC 32

DC 64

DC 128

INS o INPUT OCTAL CODE

DCl LKUP LOAD TABLE BASE
ADDRESS

ADC ADD INPUT CODE TO BASE
ADDRESS

LM LOAD OUTPUT

outTs 1 OUTPUT RESULT

Efficiencies compare as folfows:

Non-Table Lookup Table Lookup

Instructions 10 5
Memory bytes 13 15
Execution cycles min: 15 15

max: 69.5 15

A

>

SOME USEFUL PROGRAMS

Some generally useful programs are given in this section.
Programs are not shown as subroutines or as macros. The
instructions implementing required logic are given, making it
easy to incorporate an example into a program as a sub-
routine, a macro or directly as a section of main memory.
These programs are intended to show programming techniques,
rather than to demonstrate optimum program efficiency.

10.1 GENERATING TEXT

10.1.1 Simple and Dedicated Text Programs

The simplest text generation logic takes characters out of a
memory buffer and outputs them via an 170 port. The /O
operation may be under program control, or interrupt 170 may
be used. In each case, text is fetched via an elementary
instruction sequence such as:

Dal TEXT LOAD TEXT BUFFER
STARTING ADDRESS
LOOP LM LOAD NEXT TEXT BYTE

*TEST FOR END-OF-RECORD CHARACTER. INSTRUCTIONS
*FORTHIS TEXT ARE NOT SHOWN, SINCE THEY ARE A FUNE-
*TION OF THE APPLICATION.

ouTt PRTN OUTPUT CHARACTER VIA
PORT N

BR LOOP RETURN FOR NEXT
CHARACTER

10.1.2 Unpacking Decimal Digits

A byte containing two BCD digits is converted into two ASCI|
digits as follows:

LM LOAD BYTE WITH TWO
BCD DIGITS

LR O.A SAVE BYTE IN SCRATCHPAD
BYTE O

SL 4

SR 4 ISOLATE LOW ORDER DIGIT

AS 1 ADD HIGH ORDER FOUR
ASCIH BITS

LR 2.A SAVE IN SCRATCHPAD
BYTE 2

LR A0 LOAD TWO BCD DIGITS

SR 4 ISOLATE HIGH ORDER DIGIT

AS 1 ADD HIGH ORDER FOUR

BITS
*CHARACTER QUTPUT SEQUENCE FOLLOWS HERE

This instruction sequence assumes that scratchpad byte O is
available for temporary storage and that scratchpad byte 1
contains H'30". Refer to Appendix B. A decirnal digit becomes
an ASCI character as follows:

76543210 Bit No.
D01T1XXXX
e

Decimal digit, 0000 through 1001
This cede identifies an ASCII decimal digit

10-1

If scratchpad byta O is not available, any other byte may be
used for data storage.

if scratchpad byte 1 is not available, any other scratchpad
byte, or the immediate instruction:

Al H’30°

may be used.

10.1.3 Variable Text

It is possible to have a taxt generation program in ROM that
outputs variable text, temporarily stored in RAM. In other
words, a fixed ROM program outputs messages of variable
length and content. This is useful in word processing or human
dialog applications. For example, an F8 microprocessor may
drive a CRT used to collect data from convention attendess;
the text program described below allows the dialog that will
be displayed 1o be changed at any time, without changing the
text generation program,

The text table {labeled TEXT below} contains characters in
any mixed sequence.

The index table {labeled TIND below) consists of the following
3-byte sequence;

This variable text generation program uses two data tables:
a text table and an index table,

Bytes 1 and 2 - Displacement from TEXT to first character
to be output. If Byte 1 = H'FF’, end of mes-
sage is indicated. Byte 1 displacement
cannot be H'FF’.

Byte 3 - Number of characters to be printed.

Messages are identified by number, starting at 1. A mes-
sage’s number is its sequential location, as identified by H’FF’
codes in TIND.

Consider the following very simple example. The following
four messages are to be genarated:

1) ENTER PRODUCT NUMBER:

2) NO SUCH PRODUCT RE-ENTER:
3) NUMBER OF UNITS:

4) PRODUCT SHIP DATE:

The following TEXT table will be needed:

RE-ENTEREPRODUCT
BNUMBER:BNQBSUCH
BOFBUNITS:SHIPED
ATEB

The following TIND table will be needed:

Byte No.
{Hexadecimai)

MTMOOR PO~ AOGN=0

1B

Contents

{Hexadacimal)

00
03
14
FF
00
19
08
00
09

08

887883287888

|

Message 1 is 20
characters, starting at
character 4

End of massage 1

NO SUCH

PRODUCT

RE-ENTER
End of message 2

NUMBER

OF UNITS
End of message 3

PRODUCT

SHIP DATE:

End of message 4

The following program assumes that the message number
is in the accumuiator. The program generates the specified

message.

TGEN

L1

T10

LR
DCl
DS

BZ
LM

COM
BNZ
BR

LR
COoM

LM

LM
LR
XDC
DCl

LR
ADC
LR

AS

0.A
TIND
0

T10

L2
L1

0.A

outT

1.A
A
TEXT
A0

H.DC
A10

SAVE MESSAGE NUMBER
IN BYTE O

LOAD TEXT INDEX STARTING
ADDRESS

DECREMENT MESSAGE
COUNTER

MESSAGE FOUND

SEEK NEXT H'FF* BYTE IN
TIND

BYTE LOADED IS NOT H'FF
BYTE LOADED IS H'FF’
MESSAGE FOUND. LOAD
NEXT THREE BYTES OF TIND
AND SAVE IN SCRATCHPAD
BYTES O, 1 AND 2. TEST
FIRST BYTE FOR H'FF’
SIGNIFYING END OF
MESSAGE

SAVE TIND ADDRESS IN DC1
LOAD TEXT ADDRESS INTO
DCO

ADD SCRATCHPAD BYTES

1 AND O TO DCO

10-2

LR
LR
L3 LM

Pi

10.A
DC.H

CcouTt

LOAD NEXT CHARACTER TO
BE QUTPUT
OUTPUT CHARACTER

*ANY OUTPUT CODE MAY REPLACE THE CALL TO SUB-

*ROUTINE COUT

DS

BNZ

XDC
BR

ouT

TIND ORG
DC
DC
bc

DC

DC
DC

2

L3

T10

X'080¢

H'0O’

H'03’

H'16°

H'FF

HI’OBJ
H'FF

DECREMENT CHARACTER
COUNTER

RETURN FOR MORE
CHARACTERS

AT END OF MESSAGE
SEGMENT, RESTORE TIND
ADDRESS TO DCO

END OF PROGRAM. ANY
OTHER INSTRUCTIONS MAY
FOLLOW HERE

ORIGIN ARBITRARILY
SELECTED
DISPLACEMENT TO HIGH
BYTE

DISPLACEMENT TO LOW
BYTE

NUMBER OF CHARACTERS
iN THIS SEGMENT

END QOF MESSAGE 1

10.2 MULTIBYTE ADDITION AND
SUBTRACTION

10.2.1

16-Bit, Binary Addition and Subtraction

The following program adds a 16-bit value in scratchpad
bytes 1 {(high) and O {low} to another 16-bit value in scratch-
pad bytas 3 {(high} and 2 {low), as follows:

LR

AS

LR
LR

LNK
BNO

BR
Al AS

LR
BNO

BR

A0

2,A
Al
Al

ERROR

3A
NEXT

ERROR

LOAD LOW ORDER
AUGEND BYTE

ADD LOW ORDER
ADDEND BYTE

SAVE ANSWER

LOAD HIGH ORDER
AUGEND BYTE

ADD ANY CARRY

IF NO OVERFLOW,
CONTINUE

MAKE ERROR EXIT FOR
CARRY

ADD HIGH ORDER
ADDEND BYTE

SAVE ANSWER

IF NO OVERFLOW,
CONTINUE

MAKE ERROR EXIT FOR
CARRY

P

P A

To perform 16-hit binary subtraction, the two's complement
of the 16-bit value in scratchpad bytes 1 and O is added to
the 16-bit vaiue in H. Instructions required are as follows:

LR DC.H MOVE SUBTRAHEND TO DC

LR A0 LOAD LOW ORDER BYTE
OF MINUEND

COMm COMPLEMENT T

ADC ADD TO SUBTRAHEND

LIS 1 ADD 1 TO SUBTRAHEND

ADC

LR H.DC RESTORE PARTIAL SUMTO H

LR Al LOAD HIGH QRDER BYTE
OF MINUEND

COM COMPLEMENT

AS 10 ADD HU TO ACCUMULATOR

LR 10,A STORE ANSWER BACK

10.2.2 Multibyte Binary or Decimal Addition and

Subtraction

Subroutine MADD, in any of the forms and variations de-
scribed in Section 7, performs multibyte binary addition.

To perform muitibyte binary subtraction make changes as
follows. (Refer to the program version in Section 7.2.2):

Replace
EIGHT COM INITIALLY CLEAR THE
CARRY BIT
LR JW
LOOP LM
LR wW.J
NINE LNK
with:
EIGHT Ll H'FF’ INITIALLY SET THE CARRY
INC 8IT BY LOADING H’EF” INTO
A, THEN INCREMENTING
LR J.w SAVE STATUS TO FORCE
TWOS COMPLEMENT
LOOP LM LOAD NEXT BYTE
COM COMPLEMENT THE
ACCUMULATOR
LR wW.J RESTORE STATUS
NINE LNK ADD CARRY, IF PRESENT

To perform muhiibyte decimal addition, referring again to the
muitibyte addition program as described in Section 7.2.2,
repiace

TWEL AM ADD CORRESPONDING

ADDEND BYTE
with:

TWEL Al H'66’ PRIME AUGEND FOR

DECIMAL ADDITION

AMD ADD ADDEND DECIMAL

To perform multibyte decimal subtraction, the routine shouid
be changed as follows:

BUFA EQU H'0838° THE CONTENTS OF BUFA
BUFB EQuU H'0920° AND BUFB ARE ADDED. THE
BUFC EQU H'077C* RESULT IS STORED IN BUFC.
CNT - H'OA’ 10 B''TE BUFFERS ARE
— ASSUMED.
ONE LIS CNT USE SCRATCHPAD
TWO LR 0.A REGISTER 0 AS A COUNTER
THREE DCI BUFC SAVE THE ANSWER BUFFER
FOUR LR Q.Dc STARTING ADDRESS IN Q
FIVE Dl BUFA SAVE THE SOURCE BUFFER
S XDC ADDRESSES IN DCO
AND DC1
SEVEN pCI BUFB
EIGHT L H'66’ LOAD IMMEDIATE H'66°
LR 2.A AND SAVE FOR LATER USE
Ls 1 INITIALLY SET CARRY TO 1
LOOP LR 8.A SCRATCHPAD BYTE 8 USED
TO SAVE CARRY
LM LOAD SUBTRAHEND INTO
ACCUMULATOR
Com
ELEV Xbc ADDRESS MINUEND
AMD ADD MINUEND
LR Jw SAVE STATUS
AS 8 ADD PRIOR BYTE'S CARRY
ASD 2 DECIMAL CORRECT BY
ADDING H'68"
NNTN BNC TWTY+1 TEST IF DECIMAL CORRECT

CREATES A CARRY
IF IT DOES, SAVE CARRY

THRT XDC READDRESS AUGEND
BUFFER
FRATN LR H.DC SAVE AUGEND ADDRESS
INH
FFTN LR Dc.a LOAD ANSWER BUFFER
ADDRESS
SXTN ST STORE THE ANSWER
SVTN LR Q.pc SAVE ANSWER BUFFER
ADDRESS iN Q
EGTN LR DCH MOVE AUGEND ADDRESS
BACK TO H
LIS 2 LOAD CARRY FROM AMD
NS 8 OR ASD AND WITH SAVED
STATUS IN J
SR 1 SAVE IN SCRATCHPAD
BYTE 1
TWT1 Ds 0 DECREMENT COUNTER

BNZ LOOP RETURN FOR MORE

10.3 MULTIPLICATION
There are a number of possible multiplication routines,

Consider first the binary multiplication of two 8-bit, positive
numbers (in scratchpad bytes 0 and 1) to give a 16-bit prod-
duct in scratchpad bytes 7 {high} and 6 {low). The following
program performs the raquired multiplication:

*BINARY MULTIPLY SUBROUTINE

*SCRATCH REG 1 CONTAINS MULTIPLIER

*SCRATCH REG 2 CONTAINS MULTIPLICAND

*SCRATCH REGS 6 AND 7 CONTAIN PRODUCT (SR7=-MSB)

BMPY LIS 8 INITIALIZE COUNTER TO 8
LR 5.A
LIS 0 ZERO PRODUCT
LR 6,A
LR TA
BMP1 LR AB SHIFT PARTIAL
AS 6 PRODUCT LEFT 1
LR 6.A
LR AT
LNK
AS 7
LR 7.A
LR Al SHIFT MULTIPLIER
AS 1 LEFT 1, BY ADD
LR 1.A IF CARRY IF SET
BNC BMP2 ADD MULTIPLICAND TO
PRODUCT
LR A2 ADD
AS 6 MULTIPLICAND
LR 6.A TO
LR A7 PRODUCT
LNK
LR 1A
BMP2 DS B DECREMENT COUNT
BNZ BMP1 NOT FINI, REPEAT

The above program occupies 26 bytes and executas in a maxi-
mum of 373 ps. Contrast this with the program in Section
9.3.3 which occupies just 12 bytes, but executes in between
20 s and 1800.5 us.

Very fast decimal multiplication can be achieved using table
lookups. Consider a 2-digit decimal number in scratchpad
byte 0, multiplied by a 2-digit decimal number in scratchpad
byte 1, to give a 4-digit answer in scratchpad bytes 7 {high)
and 6 (low}. The routine uses 100 bytes of ROM, to hold the
following table:

TABX+00 01 02 03 04 05 06 07 08 09 0A 0B QC 0D OE OF
holds: 00O 00 00 00 G0 00 00 00 00 00 Not Used

TABX+1011 121314151617 18 i9 1A 1B 1C 1D 1E 1F
holds; 00 01 02 03 04 05 06 07 08 09 Not Used

TABX+20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
holds; 00 0204 06 08101214 16 18 Not Used

TABX+30 31 32 33 34 35 36 37 38 30 3A 3B 3C 3D 3E 3F
holds: 00 03 06 09 12 15 18 21 24 27 Not Used

TABX+40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
holds: 00 04 08 12 16 20 24 28 32 36 Not Used

TABX+50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D BE bF
holds: 00 06 10 15 20 25 30 3b 40 45 Not Used

TABX+60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
holds: 00 06 12 18 24 30 36 42 48 b4 Not Used

TABX+7071 72737475676 777879 7ATB 7C 7D 7E 7F
holds; 00 07 14 21 28 35 42 49 56 63 Not Used

i0-4

TAEX+80 81 82 83 84 85 86 87 88 89 8A 8B 8C BD 8E 8f
halds: 00 08 16 24 32 40 48 66 64 72 Not Used

TABX+90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
holds: 00 09 18 27 36 45 54 63 72 81 Not Used

All numbers above are hexadecimal. Suppose TABX is equated
to H'2000°; then byte H'2008' contains H'00"; byte H2024°
contains H'08"; byte H'2094’ contains H'36'; etc.

The table lookup proceeds as follows:

LR A0 ISOLATE MULTIPLIER

sL 4 LOW ORDER DIGIT

SR 4

(R 2A STORE IN BYTE 2

LR A LOAD MULTIPLICAND

sL a ISOLATE LOW ORDER DIGIT

AS 2 ADD MULTIPLIER LOW
ORDER DIGIT X16

DCI TABX LOAD TABLE BASE
ADDRESS

LR HDC SAVE BASE FOR FURTHER
USE

ADC ADD ACCUMULATOR INDEX

LM LOAD PRODUCT FROM
TABLE

LR 6.A STORE IN LOW ORDER
BYTE OF ANSWER

(R AO LOAD MULTIPLIER

SR 4 ISOLATE HIGH ORDER DIGIT

LR 3.A SAVE IN BYTE 3

LR A LOAD MULTIPLICAND

SR 4 ISOLATE HIGH ORDER DIGIT

sL 4

AS 3 ADD MULTIPLIER HIGH
ORDER DIGIT

LR DCH LOAD TABLE BASE
ADDRESS

ADC ADD ACCUMULATOR INDEX

LM LOAD PRODUCT FROM
TABLE :

LR 7A STORE IN HIGH ORDER BYTE
OF ANSWER

LR A LOAD LOW ORDER DIGIT OF

sL 4 MULTIPLICAND

AS 3 ADD HIGH ORDER DIGIT OF
MULTIPLIER

LR DCH OBTAIN PRODUCT

ADC

LM

LR 3A SAVE IN BYTE 3

SL 4 ADD LOW ORDER DIGIT TO

Al H'66°

ASD 6 HIGH ORDER DIGIT OF
BYTE 6

LR JW

LR B.A

LR A3 ISOLATE HiGH ORDER DIGIT ffil

SR 4 OF PRODUCT IN LOW
ORDER POSITION

LR W.J

LNK OF ACCUMULATOR. ADD

LINK

Al
ASD

SR
SL
AS

LR
ADC
LM
LR
SL
Al
ASD

LR
LR
LR
3R

H'86"

7.A

Al

DC.H

3A

H'66’

JWwW
6.A
A3

ADD HIGH ORDER BYTE OF
ANSWER

RESTORE HIGH ORDER BYTE
OF ANSWER

LOAD HIGH CRDER DIGIT
OF MULTIPLICAND

ADD LOW ORDER DIGIT OF
MULTIPLIER

OBTAIN PRODUCT

SAVE IN BYTE 3

ADD LOW ORDER DIGIT TO
HIGH ORDER DIGIT OF
BYTE 6

ISOLATE HIGH ORDER DIGIT
OF PRODUCT IN LOW ORDER
POSITION

LR w.J

LNK OF ACCUMULATOR.
ADD LINK

Al H'66'

ASD 7 ADD HIGH ORDER BYTE
OF ANSWER

LR 7A RESTORE HiGH ORDER

BYTE OF ANSWER

More compact versions of this program could be written, but
they would take longer to execute.

10.4 DIVISION

Division of positive numbers can be performed by a program
using successive subtraction as follows:

1} Zero the answer

2} Subtract the divisor from the dividend

3) Test for a negative resuit

4) For a positive result, incrament the answer and return
to 2

5) For a negative result, the division is finished. Add the
divisor to the dividend to obtain remainder.,

¢

¢

"

APPENDIX A — BINARY NUMBER SYSTEM

The binary number system is a system of counting which
utilizes the digits 1 and O to represent numeric quantitias.
The binary digits, referred to as BITs, are arranged in a se-
quence of decreasing significance based upon powers of two.
Each bit is numbered. By convention, the most significant
bit is on tha left, and the least significant bit is on the right.

For example, consider tha binary number:

Binary number 11001
Bit number 5 4 3210
Power of base two 25 2¢ 23 22 21 20
Significance 32168 4 2 1

As in any number system, the quantity represented by a bi-
nary number is calculated by muttiplying each digit by its
significance, then summing products.

The binary number example is evaluated as follows:
Q%2541 %2847 % 2340* 224Q* 2141 * 20

= 0 + 16+8+0+0+1
= 25

Quantity

Binary numbers may be used to represent any real number
positive or negative.

Non-integer numbers are represented in the same binary
format shown above except that the significance of the bits
changes. To indicate the correct interpretation of a binary
number, & “binary point’” {which is analogous to a decimal
point in the decimal number system) is inserted. Considar
the binary number below:

Binary number g1 100 1.1
Bit number 6 5 43210
Power of base two 25 24 23 22 21 20 2.1
Significance 32168 4 2 1 %

The number is evaluated as follows:
O%25+1% 2441 %2340% 2240% 2141 * 2041 * 21

O + 16+8+0+0+0+ .5
25.5

Quantity

o on

The bits of a binary number may be grouped infours and trans-
posed into the hexadecimal number system which includes
the following digits:

0.1,2 3,45 86,789 A B, CDEF

The following example illustrates the procedure:

10011100 Binary number
10011100
9 A Hexadecimal nember

In this manual, hexadecimal numbers are written within quo-
tation marks and preceded by an H. Consider the gxample:

H'27', H'AE10, H'F'

A-1

The octal number system includes the following digits:
0,12 3 465, 6,7

Binary numbers are transposed into octal numbers by arrang-
ing the bits into groups of three as illustrated below:

101001 Binary number
101 001
5 1 Octal number

The Indirect Scratchpad Address Register (ISAR) uses two
octal digits to address 64 scratchpad ragisters.

Octal numbers are written within quotation marks preceded
by an O as follows:

027, 0’3, 0’3270

Table A-1 illustrates the relationship between binary, decimal,
hexadecimal and octal numbers.

BINARY DECIMAL HEXADECIMAL | OCTAL
0000 o 0 0
0001 1 1 1
0ao10 P 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110] 6 6
0111 7 7 7
1000 8 8 10
1001 9 9 11
1010 10 A 12
1011 11 B 13
1100 12 c 14
1101 13 D 15
1110 14 E 18
1111 15 F 17

Table A-1. Binary, Decimal, Hexadecimal and Octal Numbers

THE BYTE

The Fairchild F& microprocessor is an 8-bit device, which
means that data is handled in eight binary digit {or one byte)
units. An 8-bit byte may represent 256 (29) possible permu-
tations of eight digits.

When referencing the 8-bit byte, this manual has established
the following conventions.

The bits are numbered from right to left with numbers O
through 7. The most significant bit is on the left: the least
significant bit is on the right.

76543210

LIITTTITTT

1‘

Least significant bit

Bit Number

Mast significant bit

An 8-bit byte may represent an instruction object code, an
ASCIl code or a data word.

An B-bit data word may be interpreted as a signed binary
number with a vaiue of from 127 to -128 as illustrated in
Table A-2.

it will become clear after reading the sections which follow
on binary arithmetic, that the signed binary number system
is a natural fallout of two’'s complement subtraction.

BINARY DECIMAL HEXADECIMAL
10000000 -128 80
10000001 -127 81
10000010 -126 82
11111110 -2 FE
11111111 -1 FF
00000000 o 0
Q0000001 1 1
00000010 2 2
01111101 +128 7D
01111110 +1286 7E
01111111 +127 7F

Table A-2. Signed Binary Numeric Interpretations

Binary Number Addition

Addition of binary numbers is accomplished by following
three rules.

1) bit
hit
bit + a carry bit to the next significant bit
bit
bit
bit
bit
bit
bit

Consider the addition of two positive 8-bit binary numbers:

Bit Number 765643210
H'93’ 10010011
+H'AB' 10101000
H'3B’ do111011

Carry Bit

A carry out of bit 7 has oceurred as a rasult of the addition.
The carry bit is set to indicate that the resuits of the addition
cannot be represented in the existing B8-bits. However, if the
carry bit represents the next higher significant bit, the results
are valid.

in a multiple byte addition, the carry bit from the most signif-
icant bit position of a byte is added to the least significant

A2

bit of the next {higher order)} byte as follows:

H13E2° 00010011 11100010
w4747 01000111 01000111
HEB29’ 01011010 1 00101001

Vs

1
p1011011

Binary Number Subtraction

Subtracting a binary number is the same as adding the two's
complement of the number.

The two's complement of a number is generated by comple-
menting the number {replacing O with 1 and 1 with 0) and
adding one to the complement. Here is an example:

00111100

11000011
1

11000100

H3C’
one’s complement

two's complement

Observe that negative numbers in Table A-2 are the two's
complement of their positive equivalents. In this fashion, an
8-bit number can contain sign and value information for
numbers between 128 and -127.

Whan adding signed binary numbers, car2 must be taken to
indicate when the result exceeds the boundaries of the two's
complement notation.

To exemplify the need for such indicators, consider soma
simple examples using the set of 3-bit signed binarynumbers
from 3 to -4.

Signed Binary Numbers Decimal
011 3
010 2
oM 1
000 0
111 -1
110 -2
101 -3
100 -4

Any number greater than 3 or less than -4 is outside the
boundaries of the set of 3-bit signed binary numbers.

The addition of two numbers within this set may result in a
number which is not defined as part of the set.

Consider the addition of two numbers with like signs:

1) Bit No. 210 2) Bit No. 210
2 010 3 D11
+1 001 1 001
3 o1 ' 4 100

no carry carry
3) BitNo. 210 4) Bit No. 210
-3 101 -3 101
-1 2 10
4 1100 -5 1011

-
two carries carry

In example 1, no carry out of the two high order bits occured.
The result is defined and valid.

f

e sl o W bt e o s

W

In example 2, carry out from the bit which precedas the sign
bit {carry out from bit 2) occurred. The result is undefined
and therefora invalid,

In example 3, a carry from bit 2 and 3 occurred. The result
is defined and valid.

In example 4, a carry from the sign bit occurred. The result
is undefined and invalid.

The explanation of the four examples illustrates the rules
which govern the error indication mechanism in the Fairchild
FB8 microprocessor. If the addition of two 8-bit numbers causes
a result which is outside the boundary defined for 8-bit signed
binary numbers, (illustrated in Table A-1), an overflow status
bit is set.

The overfiow status bit is defined as the EXCLUSIVE-OR of the
carry out of bit 6 and the carry out of bit 7. (EXCLUSIVE-OR is
defined later in this appendix.}

Consider binary number subtraction, (the addition of a binary
number to a two's complement number).

1} Bit No.
H'52"

two's complement

765

-

o =
-0

4321
1001
o111

[+ NeoRal

H'34’

-H'52’

-H18’

two's complement
H 18’

sl= 6
- O
| —
oo =
Q= O

Q)= =
- O

oo O

0]

—
—
j=

Qoo cCcoo O

2} Bit No.
H'2A'

twao’'s complement

=~ =
= Com o
S—=; O
- O~
bl =N o
— — —

H'B&’ 1
-H'2A’ 1
1

HeA” [1]

In example 1, the subtrahend is larger than the minuend,
indicating a negative answer, In unsigned binary number
arithmetic, a negative result is indicated by no carry out of
the most significant bit and is in two's complement form.
There is no overflow because thera is no carry out of either
bit 6 or hit 7.

O=0Q
oo =
O vt -
=0 O oW
O =2 -t

In example 2, the subtrahend is smaller than the minuend
indicating a positive answer, In unsigned binary arithmetic,
a positive result is indicated by a carry from the most signif-
fcant bit position and is in straight binary form. There is no
overflow bacause there is a carry out of both bit 6 and bit 7.

Multiplication of binary numbers may be performed in two
ways: repetitive addition or in the fashion illustrated below,
which is similar to the long hand method for multiplying
decimal humbers:

Decimal Binary
a1 T011011
x b 101
455 1011011
000000

1011011
111000111

A-3

Division of binary numbers may be accomplished by repetitive
subtraction of one operand from another, or by an operation
similar to long hand division:

111
1110101
11
100
11
1
11

o

7
321

COMPUTER LOGIC

Assembly language instructions exist which perform logical
operations on operands. Three such logical operations are
described below {logical-OR, AND, and EXCLUSIVE-OR]).

The logical-OR operation is illustrated for the two operands
I and J with the statement:

If 1 or J equals 1, then the result is 1. Otherwise, the result
is zero.

The symbol used to indicate the logical-OR operation is the
sign (V). Consider the logical-OR of two binary numbers:

AV B =C(read A “or” B equals C}

A 11010
B 01100
c 11110

The logical AND operation is iltustrated for the two operands
| and J with the following statement:

If hoth | and J are 1, then the result is 1. Otherwise, the
result is zero.

The symbol used for the logical AND operation is {A).
Consider the logical AND of two binary numbers:

AA B = C(read A “and” B equals C)

A 11010
B 01100
C 01000

The logical EXCLUSIVE-QR operation is illustrated for the op-
erands | and J with the following statement:

If both | and J equal 1 or both | and J equal O, the result is
zero, otherwise the result is 1.

The symbel used to indicate the logical EXCLUSIVE-OR
operation is a circled sign { (£).

Consider the logical EXCLUSIVE-OR of two binary numbers:

A @ B = C{read A “EXCLUSIVE-OR’ with 8 equais C)

A 11010
B 01100
c 10110

rn

APPENDIX B — ASCll CODES

¢

on

GRAPHIC OR ASCII GRAPHIC OR ASCIH GRAPHIC OR ASCI
CONTROL (HEXADECIMAL) CONTROL {HEXADECIMAL) CONTROL (HEXADECIMAL)

NULL 00 ACK 7C 1 31
SOM 01 Alt. Mode 7D 2 32
EQA 02 Rubout 7F 3 a3
EQOM 03 | 21 4 34
EQT 04 " 22 5 35
WRU 05 # 23 6 36
RU 06 & 24 7 37
BELL 07 % 25 8 38
FE 08 & 26 9 39
H. Tab 09 ! 27 A 41
Line Feed 0A { 28 B 42
V. Tab 0B) 29 C 43
Form oc * 2A D 44
Return oD + 2B E 45
SO DE ! 2C F 486
Sl OF - 20 G 47
DCO 10 . 2E H 48
X-0On 11 /7 2F | 49
Tape Aux. On 12 : 3A J 4A
X-Off 13 ; 3B K 4B
Tape Aux. Off 14 < ac L 4Cc
Error 15 = 3D M 4D
Sync 16 > 3F N 4E
LEM 17 ? 3F 0 4F
S0 18 [5B P 50
s1 19 N 5C Q 51
52 1A] 5D R 52
83 1B $ 5E S 53
54 iC -— 5F T 54
$5 10 @ 40 v 55
56 1£ blank 20 Vv 56
S7 1F 0 30 W 57

X hB

Y 59

z BA

B-1

APPENDIX C — CONVERSION TABLES/TIMER COUNTS

A

POWERS OF TWO

2" o 2"
1 010
2 105
4 2025
8 3 0125
16 4 Q.062 6
32 65 0.031 26
64 B 0.015 625
128 7 0.007 812 5
2566 8 0.003 906 25
512 9 0.001 953 125
1 024 10 0.000 976 662 &
2 048 11 0.000 488 281 25
4 096 0.000 244 140 625
8 192 0.00G 122 070 312 5
16 384 (.000 061 G35 166 25
32 768 0.000 030 517 578 125
65 536 0.000 015 268 789 062 5
131 072 0.000 007 629 394 631 25
262 144 0.000 003 B14 697 265 625
b24 2388 0.000 001 907 348 632 812 5
1 048 576 C.000 000 953 674 316 406 25
2 097 152 G.000 000 476 837 158 203 125
4 194 304 0.000 000 238 418 579 101 562 &
8 388 €08 0.00C Q00 119 209 289 550 781 28
' m 16 777 216 0.000 J0G 059 604 644 775 390 625
33 554 432 0.000 000 029 802 327 387 695 312 5
87 108 864 0.000 0Q0 014 S01 181 193 B47 656 25
134 217 728 0.000 DOO 007 450 580 506 923 828 125
268 435 456 0.00C Q00 0G3 725 290 298 461 914 062 5
B36 870 912 0.000 GOC 001 862 645 149 230 957 031 28
1 073 741 B24 0.000 00G 000 931 322 574 615 478 515 625
2 147 483 648 G.000 000 00O 465 661 287 307 730 287 812 5
4 294 967 296 0.000 000 000 232 830 643 653 869 628 206 25
8 589 934 592 0.600 000 000 116 415 321 826 934 B14 453 125

0.000 000 000 058 207 660 913 467 407 226 5682 5
Q00 000 029 103 830 4b6 733 703 613 281 25

0.000 000 QOO 014 551 916 228 366 851 BO6 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 Q00 003 637 978 807 091 712 951 660 156 25
0.000 000 Q00 001 818 983 403 545 856 475 830 078 125

0.600 000 000 Q00 909 4894 701 772 928 237 916 03% 062 5
0.000 000 DOO Q00 454 747 350 836 464 118 967 519 631 25
0.000 000 Q00 000 227 373 675 443 232 059 478 759 765 625
0.000 000 QOO 000 113 686 837 721 616 029 739 379 882 812 5

0.000 000 000 000 056G 843 418 B60 308 014 B6Y BB9 941 408 25
0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
0.000 000 000 00D 014 210 854 715 202 003 717 422 485 351 562 &
0.000 Q00 Q000 000 007 105 427 357 601 001 858 711 242 675 781 25

0.000 00C 000 DOO 003 552 713 678 BOO 500 929 355 621 337 890 625
0.000 0Q0 00C GOQ 001 776 356 839 400 250 464 677 810 668 945 312 &
0.000 000 000 00C 000 888 178 419 700 125 232 338 905 334 472 B68 25
0.000 000 000 000 QOO 444 089 209 850 062 616 160 452 BG7 236 328 125

0.000 GOC Q00 00D 000 222 044 604 925 031 308 0B4 726 333 618 1684 062 5
0.000 00C Q0O Q00 000 111 022 302 462 515 6564 042 363 166 809 082 031 25
0.000 000 GOO OO0 000 055 &11 1561 231 257 B27 027 181 583 404 541 015 625
0.000 000 0DC 000 000 027 755 675 615 628 913 510 590 791 702 270 507 812 5

0.000 000 000 000 000 G13 B77 787 807 814 456 755 295 395 851 135 253 906 25
000 0G0 0N0 000 006 938 BA3 903 907 228 377 647 697 925 567 676 950 125
000 000 00D 000 003 469 446 951 953 614 188 823 848 962 783 813 476 662 &
000 000 000 000 001 734 723 475 976 807 094 431 924 481 391 906 738 281 25

000 00O Q0D 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625

000 0DC 000 Q0Q 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 &
000 000 00G 000 OGO 216 840 434 497 100 886 807 490 560 173 988 342 286 156 25
000 000 000 OO0 000 108 420 217 248 560 443 400 745 280 086 994 171 142 578 125

17 179 B69 184
34 359 738 368

68 719 476 736
137 438 953 472
274 877 906 944
548 755 813 888

1 099 511 827 776
2 199 023 255 552
4 398 046 511 104
8 796 093 022 208

17 592 186 044 418

70 368 744 177 664
140 737 488 355 328

281 474 976 710 B566
562 949 953 421 312
125 899 906 842 624
251 799 B13 685 248

599 627 370 496

007 199 254 740 992
18 014 398 BO9 481 984
36 028 797 018 963 968

' m 72 057 594 037 927 936
= 144 115 188 075 855 872
288 230 376 151 711 744

576 460 752 303 423 488

152 921 504 606 846 976
305 843 009 213 693 952
611 686 018 427 387 904
223 372 036 854 775 808

Do -

o

=

Lo

FO@An s bhhbd bbb WMWW WWWW WEMNA RMRMNRK KRR =k 3 e
g TRWN QKR ~OUNb WN=0 ORI OBLKN SO0 o b MMBB O -Jh kW

o
o
[=]
(=]

289
388

LB hy =
M m
AR =
oooo
(= (o]

2388
cCoOoo

c-1

TABLE OF POWERS OF SIXTEEN,

16" n 16"
1 0 0.10000 00000 00000 00000 x 10
16 1 0.62500 00000 00000 00000 x 107!
256 2 0.39062 50000 00000 00000 x 1072
4 096 3 024414 06250 00000 00000 x 1073
66 536 4 0.15258 78006 25000 00000 x 10°*
1 048 576 5 095367 43164 06250 00000 x 10°°
16 777 216 6 059604 64477 53806 25000 x 1077
268 435 456 7 037252 90298 46191 40625 x 107°
4 294 967 296 8 023283 06436 53869 62891 x 107°
68 719 476 736 9 0.14551 91522 83668 51807 x 1071
1 099 511 627 776 10 0.80949 47017 72928 23792 x 10°%
17 592 186 044 416 1t 066843 41886 08080 14870 x 107"
281 474 976 710 656 12 0.35527 13678 80050 09294 x 107"
4 503 599 827 370 496 i3 0.22204 46049 25031 30808 x 107°
72 057 594 037 927 936 14 0.13877 78780 78144 56755 x 1076
t 162 921 504 606 B46 976 15 0.86736 17379 88403 54721 x 107"
TABLE OF POWERS OF 10,
10" n 107"
1 0 10000 0000 0000 QOOC
A 1 01999 99989 9999 999A
64 2 0.28F5 C28F 65C28 F5C3 x 167!
3E8 3 04189 374B C6A7 EF9E x 1672
2710 4 D.B8DB 8BAC 710C B226 x 167>
1 86A0 5 0.A7C5 AC47 1B47 8423 «x 16°¢
F 4240 6 0.10C6 F7A0 BSED 8D37 x 167
98 0680 7 0.1A07 F29A BCAF 4858 x 1677
5F5 E100 8 0.2AF3 1DC4 6118 73BF x 167°
389A CA00 9 04488 2FA0 OBSA 52CC x 167
2 B40B E400 10 O0.6DF3 7F67 SEF6 EADF x 1678
17 4876 E800 11 O.AFEB FFOBR CB24 AAFF x 167°
£8 D4AB 1000 12 01197 9981 2DEA 1119 x 167°
918 4E72 A000 13 01C25 C268 4976 81C2 x 167 !¢
5AF3 107A 4000 14 0.2D09 370D 4257 3604 x 16~ M
3 8DJE A4C6 BOOO 15 0480E BE7B 9D58 566D x 16712
23 8652 6FC1 0000 16 0.734A CASF 6226 FOAE x 167"
163 4578 6GDBA 0000 17 0.B877 AA32 36A4 B449 x 16 1
DE0O B6B3 A764 0000 18 0.1272 5DD1 D243 ABAt x 187"
8AC7 2304 B89E8 0000 19 0.1083 C94F B6D2 AC35 x 16 '°

c-2

HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table beiow provides for direct conversions between hexadecimal integers in the range 0-FFF and decimal integers in the
range 0-4095. Far conversion of larger integers, the table values may be added to the following figures:

Hexadecimal Decimal. Hexadecimal Decimal
01 000 4 095 20 000 131 072
02 000 8192 30 000 196 608
03 000 12 288 40 000 262 144
04 000 16 384 50 000 327 680
05 000 20480 60 000 393 216
06 000 24 576 70 000 458 752
Q7 000 28672 80 000 524 288
08 000 32768 90 000 589 824
08 000 36 864 AD 000 655 360
0A 000 40 960 BO 000 720 896
0B 000 45 0566 C0 000 786 432

; 0C 000 49 152 DO 0OC 851 968
0D 006 53 248 E0 000 917 504
0E 000 57 344 FG 000 983 040
OF 000 61440 100 QQ0 1048 576
10 000 65 536 200 000 2097 152
11 000 69 632 300 000 3145728
12 000 73728 400 000 4194 304
13 000 77 824 500 000 5 242 880
14 000 81920 600 000 6 297 456
15 000 86 016 700 000 7 340 032
16 000 90 112 B0O 000 8 388 608
17 000 94 208 900 000 9437 184
18 000 98 304 A00 000 10 485 760
19 000 102 400 BOO 000 11 534 336
1A 000 106 496 C00 000 12 582912
18 000 110 592 Do 0600 13631488
1C 000 114 688 EQO 000 14 680 064
1D 000 118 784 FOO0 000 15 728 640
1E 000 122 880 1 000 000 16 777 216
1F 000 126 976 2 000 000 33 6564 432

0 1 2 3 4 5 6 7 8 g A, B c D E F

000 10000 0001 0002 0003 0004 0005 0006 ODO7 0008 0009 0010 0011 0012 0013 0014 0015
(010 | 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 | 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 | 0048 0049 0050 0051 Q052 0053 0054 Q055 0056 0057 0058 0059 0060 0061 0062 0063

040 {0064 0065 0066 0067 Q068 0068 0070 DO71 0072 0073 0074 0075 Q076 0077 0078 0079
050 | 0080 00B1 0082 0083 0084 0085 0086 0087 0088 0083 0090 0091 0092 0093 0094 0085
060 | 0096 0097 0098 009¢ 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 (0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0126 0126 0127

080 10128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 | 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0166 0156 0157 0158 0159
0AQ 101680 0161 0162 0163 0164 0165 0166 0167 0168 0162 0170 0171 0172 0173 D174 0175
0BO [0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 019}

M 0CO |0192 0193 0194 0195 0196 0197 0198 0199 (0200 0201 0202 0203 0204 0205 0206 0207
0DC0 J0208 0209 0210 02311 0212 0213 0214 0215 0216 0217 0218 0219 (0220 0227 0222 0223
OEO (0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OF0 0240 0241 0242 0243 0244 0245 0246 0247 0248 0245 0260 0251 0252 0253 0254 0255

C-3

HEXADECIMAL-DECIMAL INTEGER CONVERSION {Cont’d)

0 1 2 3 4 5 6 7 8 9 A B C D E F
100 | 0256 0257 0258 0250 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 | 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 | 0288 0289 0290 029t 0292 0293 0204 02956 0296 0297 0298 02909 0300 0301 0302 0303
130 | 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 (319
140 | 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0331 0333 0334 0335
150 | 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0360 0351
160 | 0352 0353 0354 0355 0356 0367 0358 0389 0360 0381 0362 0363 0364 0365 0366 0367
170 | 0368 0369 0370 0371 0372 0373 0374 0376 0376 0377 0378 0379 0380 0381 0382 0383
180 | 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 | 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
150 | 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
180 | 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
1C0 | 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1DD | 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1E0 | 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 G490 0491 0492 0493 0494 0495
1F0 | 0496 0497 0498 0499 0500 0501 0502 0603 0504 0BO5 0506 0BD7 0508 0508 0510 05M
200 | 0512 0513 0514 0515 06516 0517 0518 0519 0520 0521 0522 0623 0524 0526 (626 0527
210 | 0528 0520 0530 0531 0532 0533 0534 0535 05636 0537 0538 0539 0540 0541 0542 0543
220 | 0544 (0545 DB46 (0547 0548 0549 (0550 0651 0552 0553 0554 (555 0656 0557 06568 0559
230 | 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
240 | 0576 0577 0578 0579 0580 0581 0582 0583 05684 0585 0686 0587 0588 0589 0590 0591
250 | 0592 0593 06594 0535 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 | 0608 0608 0610 0611 0612 0613 0614 0815 0616 0617 0618 0619 0620 0621 0622 0623
270 | 0624 0625 0626 0627 0628 0622 0630 0831 0632 0633 0634 0635 0636 0637 0838 0639
280 | 0640 0641 0842 0643 0644 0645 0846 0647 0648 0649 0650 0651 0652 0653 0654 0655
200 | 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0B6Y 0670 0671
2A0 | 0672 0873 0674 0675 0676 0677 0678 0679 0880 0681 0682 0683 06384 0685 0686 0687
2B0 | 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C0 | 0704 0705 0706 0707 0708 0709 0710 0711 g712 0713 0714 0716 0716 0717 0718 0712
200 | 0720 0721 0722 0723 0724 0725 0726 0727 O7 28 (729 0730 0731 0732 0733 0734 0735
280 | 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 (750 0751
2FQ | 0752 0753 0754 0755 0756 07567 0758 0758 0760 0761 0762 0763 0764 0766 0766 0767
LY
300 | 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 | 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 Q796 0797 0798 0799
920 | 0800 0301 0802 0803 (804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
30 | 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0B30 083
340 | 0832 0833 0834 0835 0836 0837 0838 0832 0840 0841 0842 0843 0844 0845 0846 0847
350 | 0848 0840 0850 0851 0852 0853 0854 0856 0856 0857 0858 0859 0B60 0B61 0BG2 0863
360 | 0864 0865 (866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 | 0880 0881 0882 0883 0884 0885 0836 0887 0833 0889 0890 0891 0892 0893 0834 0895
380 | 0896 0897 0898 0899 0900 0801 0902 0903 0904 0905 0906 0207 (0908 0909 Q910 091
390 | 0212 0913 0914 0815 0916 0917 0218 0919 0820 0921 0922 0923 0924 0925 0926 0927
3A0 | 0928 0029 0930 0931 0932 0933 0934 0836 0936 0037 0938 0939 0940 0241 0942 0943
3B0 | 0944 0945 0046 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0953
3C0 | 0960 0961 0962 0963 0964 09656 0966 0967 p968 0969 0870 0971 0972 0973 0974 0976
ap0 | og976 0977 ©978 0979 0980 0981 0982 0983 0884 pgg5 0986 0987 0988 0989 0990 0991
3E0 | 0992 0993 0994 0995 0986 0897 0998 0999 1 000 100t 1002 1003 1004 1005 1006 1007
3F0 | 1008 1009 1010 101 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

c-4

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd}

0 1 2 3 4 5 6 7 8 9 A B C D E F
400 | 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 10489 1050 1051 1052 1053 1054 1055
420 | 1056 1057 1058 1069 1060 1061 1062 1063 1064 1066 1066 1067 1068 1069 1070 1071
430 |t072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 108% 1086 1087
440 |7088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1%01 1102 1103
450 (1104 1106 1106 1107 1108 1109 1110 111t 1112 1113 1114 1116 1116 1117 1118 1119
460 | 1120 1121 1122 1123 1124 1126 1126 1127 1128 1129 1130 113 1132 1133 1134 1135
470 (1136 1137 1138 1132 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1160 1151
480 | 1152 1163 1164 11556 1166 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
480 1168 1169 1170 1171 1172 1173 1174 175 1176 1177 178 1179 1180 1181 1182 1183
4A0 | 1184 1185 1186 1187 1188 1188 1180 1193 1192 1193 1194 1195 1186 1197 1198 1199
4BO | 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 121 1212 1213 1214 1215
4C0 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 123%
4D0 (1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E0 | 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F0 [1264 1285 1266 1267 1268 1269 1270 127 1272 1273 1274 1275 1276 1277 1278 1279
500 | 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1200 1291 1202 1293 1294 12956
510 | 1296 1297 1298 1288 1300 130t 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 | 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 | 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
540 | 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 | 1360 1361 1362 1363 1364 1365 1366 1367 1368 1389 1370 1371 1372 1373 1374 1375
560 | 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 | 1392 1383 1394 1395 1396 1397 1398 1392 1400 1401 1402 1403 1404 1405 1406 1407
580 | 1408 1409 1410 14N 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
690 | 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1436 1436 1437 1438 1439
5A0 | 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
6B0 | 1456 14567 1458 1458 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5CO | 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 14B5 1486 1487
500 | 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EQ | 1504 1505 1506 1507 1508 1509 1510 1511 15612 1613 1514 1515 1616 1517 1518 1519
5F0 | 1520 1521 1522 1523 1524 1526 1526 1527 1528 1529 1630 1531 1532 1533 1534 1535
600 | 1636 1537 1638 1639 1540 1641 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 | 1662 1653 1664 1565 1666 1657 1568 16689 1560 1661 1562 1663 1564 1565 1566 1567
620 | 1568 1569 1570 1571 1672 1573 1574 1676 1578 1577 1578 1579 1580 1581 1582 1583
B30 | 1684 1685 1586 1587 1688 1889 1580 1591 1582 1593 1594 1585 1596 1597 1598 1599
640 | 1600 1601 1802 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 | 1616 1617 1618 1619 1820 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 | 1632 1633 1634 1635 1636 1637 1638 1633 1640 1641 1642 1643 1644 1645 1646 1647
670 | 1648 1649 1650 1651 1662 16563 1654 1655 1666 1667 1668 1659 1660 1661 1662 1663
€80 | 1664 1665 1666 1667 1668 1669 1670 16719 1672 1673 1674 1675 1676 1677 1678 1679
680 | 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1895
6A0 | 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1708 1710 1711
6B0 [1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1726 1726 1727
6C0 | 1728 1729 1730 1731 1732 1733 1734 1736 1736 1737 1738 1739 1740 1741 1742 1743
6D0 | 1744 1745 1746 1747 1748 1749 1750 1751 1762 1753 1754 1786 1756 1757 1758 1759
6E0 | 1760 1761 1762 1763 1764 1766 1766 1767 1768 1769 1770 1711 1772 1773 1774 1775
6F0 | 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

C-b

HEXADECIMAL-DECIMAL INTEGER CONVERSION {Cont'd)

0 1 2 3 4 5 6 7 8 9 A B c D E F
700 | 1782 1793 1784 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 | 1808 1808 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 | 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 | 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
740 | 1856 1857 1858 1850 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 | 1872 1873 1874 1876 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 | 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 | 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
780 | 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
700 | 1936 1937 1938 1938 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
780 | 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
280 | 1968 1069 1970 1971 1972 1973 1974 1975 1976 1977 1978 1978 1980 1981 1982 1983
7c0 | 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1097 1998 1999
700 | 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
760 | 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 203t
770 | 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
800 | 2048 2049 2050 2051 2052 2053 2054 2056 2056 2057 2058 2059 2060 2061 2062 2063
810 | 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 | 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 | 2096 2097 2098 2009 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
840 | 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
geo | 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 | 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 21656 2156 2157 21568 2159
870 | 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2178
ge0 | 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 | 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
BAD | 2208 2208 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
a80 | 2204 2295 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8CO | 2240 02241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2262 2253 2254 2265
800 | 2256 2257 2058 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 22N
8EQ | 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8FO | 2288 2289 2200 2291 2202 2203 2294 2295 2206 2207 2208 2299 2300 2301 2302 2303
000 | 2304 2305 2306 2307 2308 2300 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 | 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
020 | 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
030 | 2352 7353 2354 23556 2356 2357 2358 2350 2360 2361 2362 2363 2364 2365 2366 2367
040 | 2368 2369 2370 2371 2372 2373 2374 237§ 2376 2377 2378 2379 2380 2381 2382 2383
o50 | 2384 2385 2386 2387 2388 2389 2300 2391 2302 2393 2394 2395 2396 2397 2398 2399
060 | 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 | 2418 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
080 | 2432 72433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
090 | 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2453 2460 2461 2462 2463
0AQ | 2464 74B5 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
oBO | 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2401 2492 2493 2494 2495
oco | 2496 2497 2498 2499 2500 2501 2502 2503 2504 2605 2506 2507 2508 2509 2510 2511
apo | 2512 2513 2514 2515 2516 2517 2618 2619 2520 2621 2522 2523 2624 2525 2526 2527
OEQ | 2528 2520 2530 2531 2532 2533 2534 2536 2536 2637 2538 2533 2540 2541 2542 2643
9F0 | 7544 2546 2546 2547 2548 2540 2650 2661 2552 2663 2564 2655 2656 2557 2568 2659

C-6

)N

HEXADECIMAL-DECIMAL INTEGER CONVERSION {Cont'd)

0 1 2 3 4 5 & 7 8 9 A B C D E F
ADD | 2560 2561 2562 2563 2564 2565 2566 2567 26568 2569 2570 2571 2572 2573 2574 2575
A10 | 2676 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2500 2591
A20 | 2692 2593 2694 2595 2596 2597 2698 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 | 2608 2609 2610 2611 2612 2613 2614 26156 2816 2617 2618 26190 2620 2621 2622 2623
A40 | 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
AS0 | 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2660 2651 2652 2653 2654 2655
AB0 | 2656 2657 2658 2669 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 | 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2685 2687
ABO | 2688 2689 2690 2691 2692 2693 2604 2695 2696 2697 2698 2699 2700 2701 2702 2703
AQO | 2704 2706 2706 2707 2708 2709 2710 2711 2712 2713 2714 2716 2718 2717 2718 2719
AAQ | 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 273§
ABO | 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
ACO | 2762 2783 2754 2755 2756 2757 2768 27689 2760 4761 2762 2763 2764 2785 2766 2767
ADO | 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEOQ | 2784 2786 2786 2787 2788 2780 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AF0 | 2800 2801 2802 2803 2804 2805 28068 2807 2808 2809 2810 2811 2812 2813 2814 2815
BOO | 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 7830 2831
B10 | 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 0844 2845 2BAG 2847
B20 | 2848 2840 2850 3851 2852 2853 2854 2855 2866 2857 2B58 2859 2860 2861 2862 2863
B30 | 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B40 | 2880 2881 2882 2883 2884 2886 2866 2887 2888 2880 2800 2891 2802 2893 28094 7895
BSO | 2896 2897 2898 2809 2000 2001 2902 2903 2904 2005 2006 2007 2008 2000 2910 2011
B60 ; 2812 2913 2914 2915 2916 2917 2918 2819 2020 2021 2922 2923 2024 2975 2925 2927
B70 | 2928 2929 2030 2931 2032 2033 2034 2035 2936 2037 2038 2939 2040 2941 2942 2943
BBSO | 2044 2945 2046 2947 2948 2949 2050 2951 2852 2053 2954 2055 2956 2057 2068 2050
B90 | 2960 2961 2962 2963 2964 2065 2966 2967 2968 2060 2070 2971 2972 2073 2974 2075
BAO | 2076 2977 2978 2979 2980 2981 2982 2083 2084 208G 2086 2087 2088 2089 2090 2991
B8O | 2092 2993 2094 2995 2996 2997 2998 2993 3000 3001 3002 3003 3004 3005 3006 3007
BCO | 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDO | 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3036 3036 3037 23038 3039
BEO | 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO | 3056 3057 3068 3069 3060 3061 3062 2083 3064 3065 3066 3067 3068 3060 3070 3071
C00 (3072 3073 3074 3076 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 23086 3087
C10 ;3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 | 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 | 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 13135
CAOQ | 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3143 3150 3151
C50 | 3152 3153 3154 23156 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3186 3167
C60 | 3168 3169 3170 3171 3172 3173 3174 3176 3176 3177 3178 3179 3180 3181 3182 3183
C70 | 3184 3185 3186 3187 3188 3189 3190 23191 3192 3183 3194 31856 3196 3197 3198 3199
CBO | 3200 3201 3202 3203 3204 3205 3206 3207 3208 3200 3210 3211 3212 3213 3214 321§
C90 | 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3220 3230 3231
CAD | 3232 3233 3234 3236 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 23246 3247
CBO | 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3269 3260 3761 13262 23263
CCO | 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 13279
CDO | 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3202 3203 3204 23206
CED | 3206 3207 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFD [3312 3313 3314 3316 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3376 3327

c-7

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 é 7 8 9 A B C D E F
DOO | 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D10 | 3344 3345 3346 3347 3348 3349 3350 3357 3352 3353 3354 3355 3366 3357 3358 3359
D20 | 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 337b
D30 | 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3383 3390 33N
D40 | 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3406 3406 3407
D50 | 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 | 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 | 3440 3441 3442 3443 3444 3445 3446 3447 3448 3448 3450 3451 3452 3453 3454 34565
D80 | 3456 3457 3468 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D90 | 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 348L 3486 3487
DAO | 3488 3489 3490 3491 3492 3493 3494 3408 3496 3497 3498 3499 3500 3501 3502 3503
DBO | 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3619
DCO | 3520 3521 3522 3523 3624 3526 3526 3527 3528 3529 3530 35371 35632 3533 3634 3535
CCO | 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 356560 3651
DEO | 3562 3553 3554 3555 3666 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO | 3668 3589 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
EOC | 3584 35856 3586 3587 3588 3689 3590 3591 3582 3593 3594 3595 3596 3597 3598 3599
E10 | 3800 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 | 3616 23617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 363
E30 | 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E40 | 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3669 3660 3661 3662 3663
E50 | 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
EGO | 36BO 3581 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 | 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3708 3707 3708 3709 3710 3711
ES0 | 3712 3713 3714 3716 3716 3717 3718 3719 3720 3721 3722 3723 3724 3726 3726 3727
ESO | 3728 3729 3730 3731 3732 3733 3734 3736 3736 3737 3738 3738 3740 3741 3742 3743
EAQ | 3744 3745 3746 3747 3748 3749 3780 3751 3752 3753 3754 3756 3756 3757 3768 3769
EBG | 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
ECO | 3776 3777 3778 3779 3780 378t 3782 3783 3784 3785 3786 3787 3788 3789 3790 379
EDC { 3792 3793 3794 3796 3796 3797 3798 3799 3800 3801 3802 3803 3804 3806 3806 3807
EED | 3808 3809 23810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFQ | 3824 3825 3826 3827 3828 3820 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
FOO | 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F10 | 3856 3867 3858 3869 3B50 386t 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 | 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3886 3886 3887
F30 | 3888 3882 3890 389 3892 3893 3804 3895 3896 3897 3898 3889 3900 3901 3902 3903
FA0 | 3304 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3817 3918 3919
FE0 | 3920 3921 3022 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 | 3036 3037 3038 30839 3940 3941 3042 3943 3944 3945 3946 3947 3948 3849 39560 3951
F70 | 3952 3963 3054 3055 3956 23957 3958 3959 3960 3961 3962 3963 3964 3865 3966 3067
F80 | 3968 3969 23970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3881 3982 3083
Fo0 | 3984 3986 3986 3987 3988 3989 3090 3991 3892 3993 3994 3995 3096 3997 3998 3099
FAO | 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4016
FBO | 4018 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FCO | 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO | 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEG | 4064 4065 4066 4067 4058 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO | 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

)

)

)"

CONTENTS COUNTS

TIMER COUNTS

CONTENTS COUNTS

CONTENTS COUNTS

CONTENTS COUNTS

OF TO OF TO OF TO OF TO
COUNTER INTERRUPT COUNTER INTERRUPT COUNTER INTERRUPT COUNTER INTERRUPT
FE 254 4D 189 D2 124 9F 59
FD 253 9A 188 Ab 123 3D 58
FB 262 34 187 48 122 7C 57
F7 251 69 186 96 121 F8 56
EE 250 D3 185 2D 120 F1 65
bC 249 A7 184 5B 119 E2 54
B8 248 4F 183 B7 118 C5 53
71 247 SE 182 6E 117 8A 52
E3 246 3C 181 DD 116 16 51
c?7 245 78 180 BA 115 24 50
8E 244 FO 179 75 114 55 49
1D 243 EO 178 EB 113 AA 48
3B 242 C1 177 D6 112 54 47
78 241 82 176 AD 111 A8 46
ED 240 04 175 5A 110 50 45
DA 239 09 174 B5 109 AC 44
B4 238 12 173 6A 108 41 43
68 237 24 172 D5 107 83 42
D1 236 48 171 AB 1086 06 41
A3 235 90 170 b6 105 oD 40
47 234 21 169 AC 104 1A 39
8F 233 42 168 58 103 35 38
1F 232 8b 167 B1 102 6B 37
3F 23 OA 166 62 101 D7 36
7E 230 14 165 c4 160 AF 35
FC 229 28 164 88 99 5E 34
F9 228 51 1863 11 98 BD 33
F3 227 A2 162 22 97 78 32
EG 226 45 161 44 96 F6 31
CD 225 8B 160 89 95 EC 3¢
9B 224 17 159 13 94 D8 29
36 223 2E 158 26 23 BO 28
60 222 5D 157 4c 92 60 27
DB 221 BB 156 98 N co 26
B6 220 77 155 30 9c 80 25
6C 219 EF 164 81 89 00 24
D39 218 DE 153 c2 88 C1 23
B2 217 BC 152 84 87 03 22
64 216 79 1561 03 86 o7 21
c8 215 F2 150 10 85 OF 20
91 214 E4 149 20 84 T1E 19
23 213 C9 148 40 83 3D 18
46 212 23 147 81 82 TA 17
8D 211 27 146 02 81 F4 16
18 210 4E 145 05 80 E8 15
37 209 ac 144 oB 79 Do 14
BF 208 38 143 16 78 Al 13
DF 207 70 142 2C 77 43 12
BE 2086 E1 141 59 76 87 11
7D 205 C3 140 83 75 0E 10
FA 204 86 139 66 74 1C 9
F5 203 ocC 138 cC 73 39 8
EA 202 18 137 98 72 72 7
D4 20 31 136 32 71 ES G
AS 200 63 135 65 70 cB b
52 198 Cg 134 CA 69 97 4
Ad 198 8C 133 95 68 2F 3
49 197 19 132 2B 67 bF 2
92 196 33 313 57 G6 BF 1
25 195 67 130 AE 65 7F (8]
4A 194 CE 129 5C 64 FE 254

94 183 ab 128 B9 63
28 192 3A 127 73 B2
53 191 74 128 E? 61
A6 190 E9 125 CF 60

c-9

) 9

) N

APPENDIX D — INSTRUCTION SUMMARY

ACCUMULATOR GROUP INSTRUCTIONS

BYTES OF
oP QPER- OBJECT STATUS BITS OBJECT INTERFIUPT.” DMA 2)
CODE AND{S) CODE FUNCTION OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS™
SR 1 12 SHIFT RIGHT ONE o 1/0 o} 1 1 1 — 3
SR 4 14 SHIFT RIGHT ONE 0o 170 o} 1 1 1 — 1
5L 1 13 SHIFT LEFT ONE 0 170 o] 1/0 1 1 — 1
SL 4 15 SHIFT LEFT FOUR o] 1/0 C 1/0 1 1 — 1
CoM — 18 ACC (ACC) @ 0 1.0 o 1/0 i 1 — 1
H'FF
LNK — 19 ACC (ACC)+CB 10 1/0 1/0 1/0 1 1 — 1
INC — 1F ACC {ACC)+1 170 1/0 1/0 1.0 1 1 — 1
Lis i 7t ACC HV — 1 1 — 1
CLR — 70 ACC H'OQ — 1 1 — ¥
L i 20 ACC H'ii — 25 2 — 2
[H]
NI i 21 ACC ({ACC) Hii g 1/0 0 1/0 25 2 — 2
]
ol il 22 ACC (ACC)VHII g 170 0 1/0 25 2 — 2
11
Xl il 23 ACC (ACC) & Wi 0 100 170 2.5 2 — 2
i
Al it 24 ACC (ACC)+H'W 170 1/0 170 1/0 25 2 — 2
ii {Binary Add)
Cl 11 25 H’ii* + {ACC)+1 170 /0 170 1/0 25 2 — 2
i
) An interrupt request cannot be acknowledged until an instruction without interrupt privilege has completed execution.
2} This number of bytes can be transferred via DMA during the instruction’s execution.
SCRATCHPAD REGISTER INSTRUCTIONS
BYTES OF
oP QOPER- OBJECT STATUS BITS OBJECT INTEHRUPT” DMA 2)
CODE AND({S) CODE FUNCTION OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS
LR ¥, GENERAL LOAD 1 — — —
REGISTER FORMAT
ALLOWARBLE OPER-
ANDS LISTED BELOW
A 4r ACC (r} — 1 — 1
A.KU 0 ACC (r12) — 1 —_ 1
AKL 01 ACC (r13) — 1 — 1
A, QU gz ACC (r14) — 1 _ 1
AQL 03 ACC (r15) — 1 _ 1
rA Br r {ACC} — 1 — 1
KUA o4 r12 (ACC) — 1 —]
KLA 05 r13 {ACO) — 1 — 1
QU.A 06 r14 (ACC) — 1 — 1
QLA 07 15 (ACC) — 1 — 1
AS r Cr ACC [ACCMHr{Binary) 1/0 1,0 1/0 1/0 1 1 — 1
ASD r or ACC [ACCHr) 17010 170 170 2 1 — 2
{Decimal)
NS r Fr ACC {ACC) (n 0 1/0 © 1/0 1 1 — 1
X8 r Er ACC {ACC) @ {r) 0 1/0 © 1/0 1 1 — 1
DS r 3r r ({rHHFF'{Decrement}) 1/01/0 10 1/0 15 1 — 1

* Operand r formats are:. Direct Addressing

Indirect Addressing

0 through 11 (Decimal Form) § ar 12
H'Q' through H'B’ {hexadecimal form) | or 13
O or 14

D-1

DATA COUNTER INSTRUCTIONS

BYTES OF
OP OPER- OQBJECT STATUS BITS QOBJECT INTERRUPT” DMA 2)
CODE AND(S) CODE FUNCTION OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS
LR Q.Dc OE r14 (DCU); r15{0CL) — 4 i — 3
LR H.DC 11 r10 (DCU); r11 (DCL) — 4 1 — 3
LR DC.Q OF DCU (r14);DCL (r15) — 4 1 — 3
LR DC.H 10 DCU (r13); DCL(r17) — 4 1 - 3
ADC — 8E DC (DC) + {ACC) — 2.5 1 —_ 2
DCI i 2A DC M’ — 5] 3 — 5
]
it
XDC — 2 DC = DCy —_— 2 1 — 2
[Memory Interface
Circuit Only]
INDIRECT SCRATCHPAD ADDRESS REGISTER INSTRUCTIONS
BYTES OF
op QPER- OBJECT STATUS BITS OBJECT INTEHRUPT” DMA 2)
CODE AND(S} CODE FUNCTION OVF ZERO CARRY SIGN CYCLES CODE FRIVILEGE SLOTS
LR AlS DA ACC (ISAR) — 1 1 — 1
LR IS.A 0B ISAR (ACC) — 1 1 -— 1
LISU a 01100a* ISARU 2 — 1 1 —_ 1
LISL a 01101a* ISARL a — 1 1 —_ 1
* ais 3 bits
MEMORY REFERENCE INSTRUCTIONS
BYTES OF
op OPER- OBJECT STATUS BITS OBJECT INTERHUPT,” DMA 2)
CODE AND(S} CODE FUNCTION OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS
LM — 16 ACC ((DCh — 2.6 1 - 2
ST — 17 (DG} [(ACC) — 25 i — 1
AM — 838 ACC (ACCH{DCH /0 10 O 170 2.5 1 — 2
{Binary)
AMD — 82 ACC ({ACC)H(DC) 170 170 170 170 25 1 — 2
{Decimal)
NM — 8A ACC (ACC) ({DC) (8] /0 0 /G 2.5 1 — 2
oM -— 8B ACC (ACC) ((DCh o 0 0 /0 2.5 1 — .
XM — BC ACC (ACC) @ c 10 O /0 2.5 1 — 2
{((OCh
CM — 8D {{DC) + (ACCH+ 1) /g 10 1I/C 170 25 1 — 2
STATUS REGISTER INSTRUCTIONS
BYTES OF
oP OPER- OBJECT STATUS BITS OBJECT INTERHUPT1} DMA 2)
CODE AND(S) CODE FUNCTION OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS
LR wW.J 1D W (r9) 2 1 Yes* 2
Wy W3 W2 W1 WO
[INT [OVF | ZERO | CARRY [SIGN]
{Privileged Instruction)*
LR JW 1€ r9 Wi — 1 1 — 1
* As a result of a privileged instruction execution, a request for interrupt service is not acknowledged by the CPU until a
subsequent non-privileged instruction is executed.
MISCELLANEOUS INSTRUCTIONS
BYTES OF
opP QPER- OBJECT STATUS BITS OBJECT INTERRUPT,” DMA 2
CODE AND(S) CODE FUNCTION OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS
NCP — 2B NO OPERATION — 1 1 - 1

D-2

) @

) ¥

PROGRAM COUNTER INSTRUCTIONS

BYTES OF
oP OPER- OBJECT STATUS BITS OBJECT INTER RUPT” DMA 2)
CODE AND{S} CODE FUNCTION OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS
LR K.P 08 ri2 (PCqU),r13 (PCqL) — 4 1 —_— 3
LR P.K 93] PC4qU (r12};PCqL (r13) — 4 1 — 3
LR FO.Q oD PCoU (r1d): PCqoL {r15) — 4 1 — 3
PK —_ ocC PCoU (r12): PCyL (r13) — 4 1 Yes* K}
and PCy (PCp}
Privileged Instruction®
Pl daaa** 28 PCqy (PCp): PCp H'aaaa’ — 6.5 3 Yes* 5
i
ii ' Privileged Instruction*
POP — 1C PCp (PCq) — 2 3 Yes* 2
Privileged Instruction®
BRANCH INSTRUCTIONS
BYTES OF
oP OPER- OBJECT STATUS BITS OBJECT II\ITEFIF-‘IUF'T.”| DMA 2)
CODE AND{S) CODE FUNCTION OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS
BR aa 90 PCq {{PCqi+1)+H'aa’ — 35 2 — 3
aa
JMP anaa 2 29 PCqy H'aaaa’ —_ 5.5 3 Yes 1 4
aa
aa Privileged Instruction®
BT t.aa4 8t4 PCp ((PCq)r Haa’ — 353 2 — 3
aa if any test is true or
PCp (PCyi+ 2 if no test is true 3.0
STATUS BIT TESTS
22 21 20
[ZERG | CARRY | SIGN
BP aa 81 PCO {{PCoit 1+ H'aa’ — 3.5 2 — 3
if SIGN=1
aa PCo (PCpi+ 2ifSIGN=0 — 3.0
BC aa 82 PCo (PCi+T)t H'aa’ f CARRY=1 — 35 2 _ 3
aa PCpo {PCpi+ 2 if CARRY=0 — 30
BZ aa 84 PCp {{PC)+1) H'aa’ if ZERO=1 — 35 2 —_ 3
aa PCqo (PCp¥+ 2 if ZERO=0 — 30
BM aa 91 PCh {(PCo¥ 1 Haa’ if SIGN=0 — 35 2 — 3
aa PCp {PCpl* 2 if SIGN=1 — 30
BNC aa 92 PCo UPCpit1)+ Haa' if CARRY=0 - 35 2 — 3
aa PCO {PCp¥+ 2 if CARRY=1 — 3.0
BNZ aa 94 PCqo {{PCoit1)+ H'aa” f ZERO=0 — 35
aa PCqy {PCqM 2 if ZERO=1 — 3.0
BF t5,aa 95 PCpy {{PCpi+1k+ Haa’ — 3562 2 — 3
aa if selected status bits areall 0"
PCq {PCpr2 if any status bit is 1 — 3.0
TEST CONDITIONS
23 2z 21 20
[OVF T ZERO JCARRY[SIGN]
BNO aa 98 PCo UPCpH 1) Haa™ if OVF=0 — 352 2 — 3
aa PCq {PCpi+ 2 if OVF=1 — 3.0
BRZ aa 8F PCo {(PCp)+1it H'aa' if ISARZ7 — 2562 2 — 2
aa PCqy (PCpit 2 if ISAR=7 — 2.0

1. As a result of a privileged instruction execution, a reguest for interrupt service is not acknowledged by the CPU until a

subsequent non-privileged instruction is executed.

The contents of the accumulator are destroyed.

3.5 cycles if branch is taken. 3.0 cycles if branch is not 1aken.
tis only 3 bits

t is four bits

2.5 cycles if branch is taken. 2.0 cycles if branch is not taken.

SRS REN

D-3

INTERRUPT CONTROL INSTRUCTIONS

BYTES OF
OoP QOPER- OBJECT STATUS BITS OBJECT INTERHUPT” DMA 2)
CODE AND{S} CODE FUNCTION OVF ZERO CARRY SIGN CYCLES CODE PRIVILEGE SLOTS
DI — 1A DISABLE INTERRUPT — 2 1 — 2
El — 1B ENABLE INTERRUFT — 1 YES* 2
Privileged Instruction®
INPUT/0OUTPUT INSTRUCTIONS
BYTES OF
OFP OPER- OBJECT STATUS BITS OBJECT INTERHUPT” DMA 2)
CODE AND({S) CODE FUNCTION OVF ZERO CARAY SIGN CYCLES CODE PRIVILEGE SLOTS
INS a Aa ACC (INPUTPORTa) O 1/0 0 1/0 4% 1 — 3
Input Ports 00 to OF only
IN aa 26 ACC (INPUTPORTaa}) 0O 170 0 1/0 4 2 — 3
aa Input Ports 04 through FF only
OuTsS a Ba OUTPUTPORT a {ACC) — 4% 1 YES** 3
Qutput Ports 00 to OF only
ouT aa 27 OUTPUTPORT aa {ACC) — 4 2 YES* 3

aa Qutput Poris 04 through FF only

* As a result of a privileged instruction execution, a request for interrupt service is not acknowledged by the CPU unti! a
subsequent non-privileged instruction is executed.
** 2 cycles when 170 port address is "0 or 717

D-4

