

X-Ways Software Technology AG

WinHex

Hexadecimal Editor for Files, Disks & RAM.

Powerful System Utility.

Data Recovery, Computer Forensics, and IT Security Tool.

Manual

Copyright © 1995-2003 Stefan Fleischmann. All rights reserved.

 II

Contents

1 Preface ... 1
1.1 About WinHex ... 1
1.2 Legalities .. 2
1.3 License Types... 2

2 General Information... 3
2.1 Using a Hex Editor... 3
2.2 Endian-ness .. 3
2.3 Integer Data Types ... 4
2.4 Floating-Point Data Types ... 4
2.5 Date Types ... 5
2.6 ANSI ASCII/IBM ASCII ... 6
2.7 Checksums ... 6
2.8 Digests.. 7
2.9 Technical Hints .. 7

3 Working with the Hex Editor .. 8
3.1 Start Center .. 8
3.2 Entering Characters.. 9
3.3 Edit Modes ... 9
3.4 Status Bar ... 10
3.5 Scripts... 10
3.6 WinHex API... 11
3.7 Disk Editor ... 11
3.8 RAM Editor.. 13
3.9 Template Editing.. 14
3.10 Useful Hints ... 14

4 Menu Reference .. 15
4.1 File Menu ... 15
4.2 Edit Menu... 16
4.3 Search Menu... 17
4.4 Position Menu .. 18
4.5 View Menu... 19
4.6 Tools Menu .. 20
4.7 Specialist Tools Menu.. 22
4.8 Options Menu... 24
4.9 File Manager .. 25
4.10 Window Menu.. 26
4.11 Help Menu.. 26
4.12 Windows Context Menu .. 26

 III

5 Options... 27
5.1 General Options ... 27
5.2 Undo Options ... 29
5.3 Security & Safety Options ... 30
5.4 Search Options ... 31
5.5 Replace Options ... 32

6 Miscellaneous .. 33
6.1 Block .. 33
6.2 Modify Data ... 33
6.3 Conversions.. 34
6.4 Wiping and Initializing .. 35
6.5 Disk Cloning .. 36
6.6 Position Manager ... 37
6.7 Backups .. 37
6.8 Backup Manager .. 38
6.9 Data Interpreter .. 39

Appendix A: Template Definition.. 40
1 Header... 40
2 Body: Variable Declarations .. 41
3 Body: Advanced Commands .. 42

Appendix B: Script Commands ... 43

Appendix C: Disk Editor Q&A .. 49

Appendix D: Automatic Data Recovery .. 49

Appendix E: Manual Data Recovery... 52

Appendix F: Master Boot Record.. 53

Appendix G: Surplus Sectors.. 54

 1

1 Preface

1.1 About WinHex

Copyright © 1995-2003 Stefan Fleischmann. All rights reserved.

Marketed by
X-Ways Software Technology AG Web: http://www.x-ways.net
Carl-Diem-Str. 32 Product homepage: http://www.x-ways.net/winhex/
32257 Bünde Ordering: http://www.x-ways.net/winhex/order.html
Germany Support forum: http://www.winhex.net
Fax: +49 721-151 322 561 E-mail address: mail@x-ways.com

Registered in Bünde (HRB 1777). CEO: Stefan Fleischmann. Board of directors (chairwoman): Dr. M. Horstmeyer.

X-Ways Software Technology AG is a stock corporation incorporated under the laws of the
Federal Republic of Germany. WinHex was first released in 1995. This manual was compiled
from the online help of WinHex v11.15, released November 2003. It is available in English,
German, French, and Spanish.

French translation by Jérôme Broutin (user interface) and Henri Pouzoullic (program help &
manual) in January 2000. Revised and updated since by Bernard Leprêtre. Entire Spanish
translation by José María Tagarro Martí. Italian translation by Luca Cantarini (user interface).
Brazilian Portuguese translation by Dr. Heyder Lino Ferreira (user interface).

Cryptography consulting: Alexandre Pukall

The following operating systems are supported: • Windows 95/98/Me

 • Windows NT 4.0
 • Windows 2000
 • Windows XP

Professional users around the world include...
U.S. and German federal law enforcement agencies, ministries such as the Australian Department
of Defence, U.S. national institutes (e.g. the Oak Ridge National Laboratory in Tennessee), the
Technical University of Vienna, the Technical University of Munich (Institute of Computer
Science), the German Aerospace Center, the German federal bureau of aviation accident
investigation, Microsoft Corp., Hewlett Packard, Toshiba Europe, Siemens AG, Siemens
Business Services, Siemens VDO AG, Infineon Technologies Flash GmbH & Co. KG, Ontrack
Data International Inc., KPMG Forensic, Ericsson, National Semiconductor, Lockheed Martin,
BAE Systems, TDK Corporation, Seoul Mobile Telecom, Visa International, DePfa Deutsche
Pfandbriefbank AG, Analytik Jena AG, and many other companies and scientific institutes.
Please visit the web site to find out how to order the full version!

http://www.x-ways.net/
http://www.x-ways.net/winhex/
http://www.x-ways.net/winhex/order.html
http://www.winhex.net/
mailto:mail@x-ways.com

 2

1.2 Legalities

Copyright © 1995-2003 Stefan Fleischmann. All rights reserved. No part of this publication may
be reproduced, or stored in a database or retrieval system without the prior permission of the
author. Any brand names and trademarks mentioned in the program or in this manual are
properties of their respective holders and are generally protected by laws.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. However, the author neither offers any warranties or representations nor
does he accept any liability with respect to the program or the manual.

The algorithms “Pukall Cipher 1” (PC 1) and “Pukall Stream Cipher Hash Function” are
copyright by Alexandre Pukall. Source code available from http://www.multimania.com/pc1,
http://www.multimania.com/cuisinons/progs/, and http://www.freecode.com .

The MD5 message digest is copyright by RSA Data Security Inc.

The “zlib” compression library is copyright by Jean-loup Gailly and Mark Adler. Homepage:
ftp://ftp.cdrom.com/pub/infozip/zlib/zlib.html

1.3 License Types

To use WinHex as a full version, you need a base license for personal, professional, or specialist
use. If you are going to use WinHex on multiple machines, you will also need additional licenses.
The full version will save files larger than 200 KB, write disk sectors, edit virtual memory and
show no evaluation version reminders. It will reveal its license status on start-up and in the About
box.

• Personal licenses are available at a reduced price for non-commercial purposes only, in a non-

business, non-institutional, and non-government environment.
• Professional licenses allow usage of the software in any environment (at home, in a company,

in an organization, or in public administration). Professional licenses provide the ability to
execute scripts and to use the WinHex API.

• Specialist licenses in addition to this allow to use the Specialist Tools menu section.
Particularly useful for computer forensics and IT security specialists.

Please see the Order page of the web site on how to order your licenses.

 3

2 General Information

2.1 Using a Hex Editor

A hex editor is capable of completely displaying the contents of each file type. Unlike a text
editor, a hex editor even displays control codes (e.g. linefeed and carriage-return characters) and
executable code, using a two-digit number based on the hexadecimal system.

Consider one byte to be a sequence of 8 bits. Each bit is either 0 or 1, it assumes one of two
possible states. Therefore one byte can have one of 2•2•2•2•2•2•2•2 = 28 = 256 different values.
Since 256 is the square of 16, a byte value can be defined by a two-digit number based on the
hexadecimal system, where each digit represents a tetrade or nibble of a byte, i.e. 4 bits. The
sixteen digits used in the hexadecimal system are 0-9, A-F.

You can change the value of a byte by changing these digits in the hexadecimal mode. It is also
possible to enter the character that is assigned to a certain byte value by a character set (cf.
Entering Characters). All kinds of characters are allowed (e.g. letters and punctuation marks).
Example: A byte whose decimal value is 65 is displayed as 41 in hexadecimal notation
(4•16+1=65) and as the letter A in text mode. The ASCII character set defines the capital letter A
to have the decimal value of 65.

When editing files of a certain type (for instance executable files), it is essential not to change the
file size. Moving the addresses of executable code and included data results in severely damaging
such files. Please note that changing the contents of a file generally may be the reason for the
corresponding application to behave anomalously. It is quite safe to edit text passages in a file. At
any rate, it is recommendable to create backup files before editing.

The command “Combined Search” was especially designed for editing files created by computer
games to save the game state. If you know the value of a variable in two of such files, you can
find out the offset, i.e. the position, at which this data is saved. Example: If two files hold the
information that you have 5 resp. 7 points/lives/..., search simultaneously for the hex value 05 in
the first and 07 in the second file.

2.2 Endian-ness

Microprocessors differ in the position of the least significant byte: Intel®, MIPS®, National
Semiconductor, and VAX processors have the least significant byte first. A multi-byte value is
stored in memory from the lowest byte (the “little end”) to the highest byte. For example, the
hexadecimal number 12345678 is stored as 78 56 34 12. This is called the little-endian format.

Motorola and Sparc processors have the least significant byte last. A multi-byte value is stored in
memory from the highest byte (the “big end”) to the lowest byte. For example, the hexadecimal

 4

number 12345678 is stored as 12 34 56 78. This is called the big-endian format.

2.3 Integer Data Types

Format/Type Range Example

signed 8 bit -128...127 FF = -1
unsigned 8 bit 0...255 FF = 255
signed 16 bit -32,768...32,767 00 80 = -32,768
unsigned 16 bit 0...65,535 00 80 = 32,768
signed 32 bit -2,147,483,648...2,147,483,647 00 00 00 80 = -2,147,483,648
unsigned 32 bit 0...4,294,967,295 00 00 00 80 = 2,147,483,648
signed 64 bit -263 (≈-9·1018)...263-1 (≈9·1018) 00 00 00 00 00 00 00 80 = -263

Unless stated otherwise, multi-byte numbers are stored in little-endian format, meaning that the
first byte of a number is the least significant and the last byte is the most significant. This is the
common format for computers running Microsoft Windows. Following the little-endian
paradigm, the hexadecimal values 10 27 can be interpreted as the hexadecimal number 2710
(decimal: 10,000).

The Data Interpreter is capable of interpreting data as all of the aforementioned integer types.

2.4 Floating-Point Data Types

Type Range Precision [Digits] Bytes

Float (Single) ± 1.5-45...3.438 7-8 4
Real ± 2.9-39...1.738 11-12 6
Double (Double) ± 5.0-324...1.7308 15-16 8
Long Double (Extended) ± 3.4-4932...1.14932 19-20 10

The type names originate from the C programming language. The corresponding Pascal names
are specified in brackets. The Real type exists only in Pascal. The Data Interpreter is capable of
translating hex values in an editor window into floating-point numbers of all four types and vice-
versa.

In the computer, a floating-point number F is represented by a mantissa M and an exponent E,
where M × 2E = F. Both M and E are signed integer values themselves. The four data types differ
in their value ranges (i.e. the number of bits reserved for the exponent) and in their precision (i.e.
the number of bits reserved for the mantissa).

On Intel®-based systems, calculations upon floating-point numbers are carried out by a math
coprocessor while the main processor waits. The Intel® 80x87 uses 80-bit precision for
calculations, whereas RISC processors often use 64-bit precision.

 5

2.5 Date Types

The following date formats are supported by the Data Interpreter:

• MS-DOS Date & Time (4 bytes)

The lower word determines the time, the upper word the date. Used by several DOS function
calls, by the FAT file systems and many system utilities such as file archivers.

Bits Contents
0-4 Second divided by 2
5-10 Minute (0-59)
11-15 Hour (0-23 on a 24-hour clock)
16-20 Day of the month (1-31)
21-24 Month (1 = January, 2 = February, etc.)
25-31 Year offset from 1980

• Win32 FILETIME (8 bytes)

The FILETIME structure is a 64-bit integer value representing the number of 100-nanosecond
intervals since January 1, 1601. Used by the Win32 API.

• OLE 2.0 Date & Time (8 bytes)

A floating-point value (more exactly: a double) whose integral part determines the number of
days passed since December 30, 1899. The fractional part is interpreted as the day time (e.g. 1/4 =
6:00 a.m.). This is the OLE 2.0 standard date type, e.g. it is used by MS Excel.

• ANSI SQL Date & Time (8 bytes)

Two consecutive 32-bit integer values. The first one determines the number of days since
November 17, 1858. The second one is the number of 100-microsecond intervals since midnight.
This is the ANSI SQL standard and used in many databases (e.g. InterBase 6.0).

• UNIX, C, FORTRAN Date & Time (4 bytes)

A 32-bit integer value that determines the number of seconds since January 1, 1970. This data
type was used in UNIX, by C and C++ (“time_t”), and by FORTRAN programs since the 80's.
Sporadically defined as the number of minutes since January 1, 1970. The Data Interpreter
options let you switch between both sub-types.

• Java Date & Time (8 bytes)

 6

A 64-bit integer value that specifies the number of milliseconds since January 1, 1970. Principally
stored in big endian, which is the typical byte order in Java.

2.6 ANSI ASCII/IBM ASCII

ANSI ASCII is the character set used in Windows applications. It is standardized by the
American National Standards Institute. MS-DOS uses the IBM ASCII character set (also called
OEM character set). These character sets differ in the second half, containing characters with a
ASCII values greater than 127.

It is reasonable to switch the menu option “Use ANSI ASCII” off when viewing or editing files
originating from a DOS program.

Use the “Convert” command of the Edit menu to convert text files from one character set into the
other.

The first 32 ASCII values do not define printable characters, but control codes:

Hex Control Code Hex Control Code
00 Null 10 Data Link Escape
01 Start of Header 11 Device Control 1
02 Start of Text 12 Device Control 2
03 End of Text 13 Device Control 3
04 End of Transmission 14 Device Control 4
05 Enquiry 15 Negative Acknowledge
06 Acknowledge 16 Synchronous Idle
07 Bell 17 End of Transmission Block
08 Backspace 18 Cancel
09 Horizontal Tab 19 End of Medium
0A Line Feed 1A Substitute
0B Vertical Tab 1B Escape
0C Form Feed 1C File Separator
0D Carriage Return 1D Group Separator
0E Shift Out 1E Record Separator
0F Shift In 1F Unit Separator

2.7 Checksums

A checksum is a characteristic number used for verification of data authenticity. Two files with
equal checksums are highly likely to be equal themselves (byte by byte). Calculating and
comparing the checksums of a file before and after a possibly inaccurate transmission may reveal
transmission errors. An unaffected checksum indicates that the files are (in all likelihood) still

 7

identical. However, a file can be manipulated on purpose in such a way that its checksum remains
unaffected. Digests are used instead of checksums in such a case, where malicious (i.e. not mere
random) modifications to the original data are to be detected.

In WinHex, checksums are calculated when opening (optional, cf. Security Options) or analyzing
(cf. Tools menu) a file. After modifying files, checksums can be re-calculated by pressing
ALT+F2.

The standard checksum is simply the sum of all bytes in a file, calculated on an 8-bit, 16-bit, 32-
bit, or 64-bit accumulator. The CRC (cyclic redundancy code) is based on more sophisticated
algorithms, which are safer.

Example: If a transmission alters two bytes of a file in such a way that the modifications are
countervailing (for instance byte one +1, byte two -1), the standard checksum remains unaffected,
whereas the CRC changes.

2.8 Digests

A so-called digest is, similar to a checksum, a characteristic number used for verification of data
authenticity. But digests are more than that: digests are strong one-way hash codes.

It is computationally feasible to manipulate any data in such a way that its checksum remains
unaffected. Verifying the checksum in such a case would lead to the assumption that the data has
not been changed, although it has. Therefore, digests are used instead of checksums if malicious
(i.e. not mere random) modifications to the original data are to be detected. It is computationally
infeasible to find any data that corresponds to a given digest. It is even computationally infeasible
to find two pieces of data that correspond to the same digest.

Of course, random modifications, e.g. caused by an inaccurate transmission, can also be detected
when using digests, but checksums are sufficient and serve better for this purpose, because they
can be calculated much faster.

WinHex incorporates the widely known 128-bit MD5 message digest, SHA-1, SHA-256, and
PSCHF ("Pukall Stream Cipher" hash function).

2.9 Technical Hints

• Technical specifications

 Amount of memory used by program: ..1 MB
 Maximum number of windows:.....................................1000 (WinNT/2000), 500 (Win9x/Me)
 Maximum disk & file size: ... ≈2000 GB
 Maximum number of parallel program instances: ...99

 8

 Maximum number of positions:.. limited by RAM only
 Maximum number of reversible keyboard inputs: ...65535
 Encryption depth:..128 bit
 Digest length in backups:.. 128/256 bit
 Character sets supported: ANSI ASCII, IBM ASCII, EBCDIC, Unicode (limited)
 Offset presentation:..hexadecimal/decimal

• In most cases, the progress display shows the completed percentage of an operation. However,

during search and replace operations it indicates the relative position in the current file or disk.

• The user interface looks best if no extra large font is used in your Windows system.

• WinHex expects your computer to be running in little-endian mode.

• Keys you specify for encryption/decryption are not saved on the hard disk. Provided that the

corresponding security option is enabled, the key is stored in an encrypted state within the
RAM, as long as WinHex is running.

• Search and replace operations generally run fastest with case sensitivity switched on and

without wildcards enabled.

• When searching with the option “count occurrences” activated or when replacing without

prompting, for a search algorithm there are generally two ways to behave when an occurrence
has been found, which in some cases may have different results. This is explained by the
following example:

The letters ana are searched in the word “banana”. The first occurrence has already been found
at the second character.
1st alternative: The algorithm continues the search at the third character. So ana is found

again at the fourth character.
2nd alternative: The three letters ana found in the word “banana” are skipped. The remaining

letters na do not contain ana any more.

WinHex is programmed in the second manner, because this delivers the more reasonable
results when counting or replacing occurrences. However, if you continue a search using the
F3 key or you choose the replace option “prompt when found”, the algorithm follows the first
paradigm.

3 Working with the Hex Editor

3.1 Start Center

The so-called Start Center is a dialog window that is optionally displayed at startup and is meant

 9

as a simplified control panel for beginning your work. It allows to quickly open files, disks,
memory modules, and folders as well as up to 255 recently edited documents (16 by default, left-
hand list). These may be files, folders, logical drives or physical disks. When opened again,
WinHex restores the last cursor position, the scrolling position, and the block (if defined) of each
document, unless the corresponding option is disabled.

From the Start Center you are also able to access projects (right-hand top list). A project consists
of one or more documents to edit (files or disks). It remembers the editing positions, the window
sizes and positions and some display options. By saving a window arrangement as a project you
can continue to work in several documents right where you left them, with a single click only.
This is especially useful for recurring tasks. When you load a project, all currently opened
windows are automatically closed first.

Besides, WinHex automatically saves the window arrangement from the end of a WinHex session
as a project, and can re-create it next time at startup. Each project is stored in a .prj file. It can be
deleted or renamed right within the Start Center (context menu or DELETE/F2 key).

Last not least, the Start Center is the place where to manage scripts. You may check, edit, create,
rename, and delete scripts using the context menu. To execute a script, double-click it or single-
click it and click the OK button.

3.2 Entering Characters

In hex mode only hexadecimal characters are to be entered ('0'...'9', 'A'...'F'). In text mode you can
enter all kinds of characters: letters, numbers, punctuation marks and special characters (e.g. '»', ']'
and '^'). Please use the Windows program charmap.exe to find out key combinations for such
characters (e.g. Alt-1-7-5 for '»'). The “WinHex” font even supports the Euro symbol (€).

3.3 Edit Modes

Default edit mode: Modifications to files or disks opened in default edit mode are stored in
temporary files. The latter are created dynamically when needed. The menu command “Save” of
the File menu updates the original file or disk.

View mode: Files or disks that are opened in view mode cannot be edited, only examined. In
other words, they are opened write-protected.

In-place edit mode: Please use caution when opening files or disks in in-place edit mode. All
kinds of modifications (keyboard input, filling/removing the block, writing clipboard data,
replacements, ...) are written to the original file (“in-place”) without prompting! It is not
necessary to save the file manually after having modified it. Instead, the modifications are saved
lazily and automatically, at latest when closing the edit window. However, you may use the Save
command to ensure the buffer is flushed at a given time.

 10

The in-place edit mode is preferable if the data transfer from the original to the temporary file and
vice-versa, which is obligatory in default edit mode for certain operations, consumed too much
time or disk space. This may be the case when opening very large files or when modifying huge
amounts of data. Since usually no temporary files are needed in in-place edit mode, this edit mode
is generally faster than the default edit mode. The in-place edit mode is the only mode available
when using the RAM editor.

Even in in-place edit mode the creation of a temporary file is unavoidable when altering the file
size.

3.4 Status Bar

The status bar displays the following information about a file:

1. Number of current page and total number of pages (disk editor: sectors)
2. Current position (offset)
3. Decimal translation of the hex values at the current position
4. Beginning and end of the current block (if currently defined)
5. Size of current block in bytes (ditto)

Click the status bar cells in order to...
1. Move to another page/sector,
2. Move to another offset,
3. Define the integer type for decimal translation and
4. Define the block.

Right-click the status bar in order to copy pieces of information from the status bar into the
clipboard.

Right-clicking the 2nd status bar field allows switching between absolute (default) and relative
offset presentation. This is useful when examining data that consists of records of a fixed length.
After specifying the record length in bytes, the status bar displays the current record number and
the relative offset therein.

Right-clicking the 3rd status bar field allows copying the four hex values at the current position in
reverse order into the clipboard. This is useful for following pointers.

3.5 Scripts

Most of the functionality of WinHex can be used in an automated way, e.g. to speed up recurring
routine tasks or to perform certain tasks on unattended remote computers. The ability to execute
scripts other than the supplied sample scripts is limited to owners of professional or specialist

 11

licenses. Scripts can be run from the Start Center or the command line. While a script is executed,
you may press Esc to abort. Because of their superior possibilities, scripts supersede routines,
which were the only method of automation in previous versions of WinHex.

WinHex scripts are text files with the filename extension ".whs". They can be edited using any
text editor and simply consist of a sequence of commands. It is recommended to enter one
command per line only, for reasons of visual clarity. Depending on the command, you may need
to specify parameters next to a command. Most commands affect the file or disk presented in the
currently active window.

See Appendix B for a description of currently supported script commands.

3.6 WinHex API

The WinHex API (application programming interface) allows to use the advanced capabilities of
the WinHex Hex Editor programmatically from your own C++, Delphi, or Visual Basic
programs. In particular, it provides a convenient and simple interface for random access to files
and disks.

Developing software that uses the WinHex API requires a valid professional or specialist
WinHex license. Additionally, you need import declarations for your programming language of
choice, the library file “whxapi.dll”, and the API documentation. Please find those files and more
detailed information online at http://www.winhex.com/winhex/api/.

You may also distribute both any software that makes use of the WinHex API and WinHex itself.
There are two ways how to distribute WinHex:

1. Distribute the unlicensed WinHex version. For the API to work, your customer has to purchase
professional or specialist licenses according to the number of WinHex installations needed.
-or-
2. Recommended: distribute a special API version of WinHex that is configured to only provide
the API functionality and that is available at a reduced price. You may place your order online at
http://www.winhex.com/winhex/api/. Volume discount available on request (please specify the
number of licenses you are interested in). One WinHex API license needed per end user
computer. The product will be licensed to you, you will be the actual owner of the licenses, but
any of your customers may use them. The end user does not have to take care of anything related
to WinHex.

3.7 Disk Editor

The disk editor, that is part of the Tools menu, allows you to access floppy and hard disks below
the file-system level. Disks consist of sectors (commonly units of 512 bytes). You may access a
disk either logically (i.e. controlled by the operating system) or physically (controlled by the

http://www.winhex.com/winhex/api/
http://www.winhex.com/winhex/api/

 12

BIOS). On most computer systems you can even access CD-ROM and DVD media.

Opening a logical drive means opening a contiguous formatted part of a disk (a partition) that is
accessible under Windows as a drive letter. It's also called a “volume”. WinHex relies on
Windows being able to access the drive. Opening a physical disk means opening the entire
medium, as it is attached to the computer, e.g. a hard disk including all partitions. It could also
called the “raw device”. The disk normally does not need to be properly formatted in order to
open it that way.

Usually it is preferable to open a logical drive instead of a physical disk, because more features
are provided in this case. For example, “clusters” are defined by the file system, the allocation of
clusters to files (and vice versa) is known to WinHex, “free space” and “slack space” have a
meaning. Only if you need to edit sectors outside a logical drive (e.g. the master boot record), if
you wish to search something on several partitions of a hard disk at the same time, or if a partition
is damaged or formatted with a file system unknown to Windows, so Windows is unable to make
it accessible as a drive letter, you would open the physical disk instead. Via the menu that appears
when clicking the “Access” button, you may also open individual partitions from within a
physical disk.

On partitions formatted with FAT12, FAT16, FAT32, or NTFS, WinHex offers a directory
browser, which resembles the Windows Explorer's right-hand list. It can be disabled or enabled
by clicking the checkbox next to the Access button. The directory browser lists existing files and
directories first, then deleted files and directories. Compressed files are displayed in blue,
encrypted files in green (NTFS only). Right-clicking any item in the directory browser brings up a
context menu with commands for opening a file or directory, exploring a directory, locating the
beginning of a file or directory on the disk, locating the corresponding directory entry (FAT) or
file record (NTFS), listing the allocated clusters in a separate window, and for easily recovering a
lost or existing file or directory. The latter can recreate entire directory structures. Double-
clicking executes the default action (locating the data, listing clusters, and exploring in the case of
a directory). Clicking items in the separate list window allows to navigate to the listed clusters in
the disk editor.

On NTFS drives, the directory browser lists all deleted files on the drive of which traces could
still be found in a dedicated virtual folder “Lost & Found”. These are the same files that are also
recoverable using File Recovery by Name with the "thorough search" option disabled.

Please note the following limitations:
• Under Windows NT and its successors administrator rights are needed to access hard disks.
• Under Windows 9x, certain requirements must be met to access CD-ROM and DVD media

(see Appendix C).
• Replace functions are not available.
• WinHex cannot write to CD-ROM or DVD.
• The disk editor cannot operate on remote (network) drives.

The appendix E of this manual provides you with specifications of the master boot record, that
can be edited using the disk editor.

 13

Edit free space on drive (Windows 95/98/Me)

Under Windows 95/98/Me, it is possible to edit the currently unused space on a logical drive. The
aforementioned limitations do not apply in this case. WinHex creates a file which uses the
complete free space on the selected drive. You can edit this file in in-place mode. The integrity of
data in the used parts of the drive cannot be affected hereby.

You can use this function to recover unintentionally deleted data which has not yet been
overwritten by new files. Search for the data, mark it as the current block and copy it. Of course,
data that has been deleted by WinHex using the Delete Irreversibly command cannot be found in
unused parts of a drive any more.

Save Sectors: To be used analogously to the Save command for files. Part of the File menu.
Writes all modifications to the disk. Please note that, depending on your changes, this may
severely damage the integrity of the disk data. If the corresponding undo option is enabled, a
backup of the concerned sectors is created, before they are overwritten. This command is only
available in the full version.

3.8 RAM Editor

The RAM editor allows you to examine the virtual memory of a process (i.e. a program that is
being executed). All memory pages committed by this process are presented in a continuous
block. Unused (free or reserved) pages are ignored by default, but optionally included and
displayed with “?” characters. With no such gaps, you may compare memory dumps to files
exactly with one another (absolute and virtual addresses are identical), e.g. to examine stack and
heap states or observe virusses.

Select one of the listed processes. You may access either the so-called primary memory or the
entire memory of this process, or one of the loaded modules. The primary memory is used by
programs for nearly all purposes. Usually it also contains the main module of a process (the EXE
file), the stack, and the heap. The “entire memory” contains the whole virtual memory of a
process including the part of memory that is shared among all processes, except system modules.
Under Windows 95/98/Me, system modules are listed optionally in the process tree. System
modules are defined as modules that are loaded above the 2 GB barrier (such as kernel32.dll,
gdi32.dll). They are shared among all running processes.

Please note the following limitations:
• Caution: Only keyboard input can be undone!
• Virtual memory of 16-bit processes is partially accessible under Windows 95/98/Me only.
• Editing is possible in in-place mode only.
• System modules of Windows 95/98/Me can only be examined in view mode, not manipulated.

The options relevant for the RAM editor are “Check for virtual memory alteration” and “Virtual
Addresses”.

 14

3.9 Template Editing

A template is a dialog box that provides means for editing custom data structures in a more
comfortable and error-preventing way than raw hex editing does. Editing is done is separate edit
boxes. Changes take effect when pressing the ENTER key or when quitting the template after
being prompted. The data may originate from a file, from disk sectors, or from virtual memory.
Especially when editing databases, you may prefer to define a custom template for ease of access
to the records. You will find the command to print a template in the system menu.

A template definition is stored in a text file. The template editor enables you to write template
definitions and offers syntax checking. A template definition mainly contains variable
declarations, that are similar to those in source code of programming languages. The syntax is
explained in detail in Appendix A. The supported data types include all the common integer,
floating-point and boolean variants, five date types, hex values, binary, characters, and strings
type. Arrays of both single variables and groups of variables can be used.

The ability to move freely forwards and backwards within the data makes using templates
particularly flexible:
• The same variable may be interpreted and manipulated in several ways.
• Irrelevant data sections can be skipped.

The template manager lists all text files in the WinHex directory that contain template
definitions. The title of the template along with a description, the filename, and the date and time
of the last modification are shown. Click the Apply button to display a template using the selected
template definition for the data in the current editor window at the current position. You may also
create a new template definition, delete or edit an existing one.

WinHex comes with several sample templates.

3.10 Useful Hints

• Use the mouse buttons as follows to define the block (if the context menu is switched off):

• Double-clicking left sets the block beginning.
• Single-clicking right sets the block end.
• Double-clicking the right button clears the block.

• You may want to define the block using the keyboard (SHIFT+arrow keys or ALT+1 and
ALT+2).

• Use the TAB key to switch between hexadecimal and text mode.
• Use the INS key to switch between insert and overwrite mode.
• CTRL+Q closes all windows.
• ENTER displays the Start Center.
• CTRL+ENTER displays the Window Manager.

 15

• ESC aborts the current operation if any, otherwise clears the block, dismisses an active dialog
or template window.

• PAUSE stops or continues the current operation.
• F11 repeats the last Go To Offset command. CTRL+F11 works in the opposite direction (from

the current position).
• SHIFT+F7 switches between three character sets.
• (SHIFT+)ALT+F11 repeats the last Move Block command.
• ALT+F2 recalculates the auto-hash (checksum or digest) after a file was modified.
• ALT+LEFT and ALT+RIGHT allow for switching between records within a template (just as

the "<" and ">" buttons). ALT+HOME and ALT+END access the first and the last record,
respectively.

• ALT+G moves the cursor in the edit window to the current template position and closes the
template window.

• CTRL+F9 opens the Access button menu (disk edit windows only).
• WinHex accepts filenames specified in the command line and is drag-and-drop capable.
• Use scripts to make your work with WinHex more efficient.
• You can specify the name of a script as a command line parameter.
• “Invalid input”: After dismissing this error message box, the blinking cursor indicates what

parameter provided by you is invalid and needs to be corrected.
• Switch from hexadecimal to decimal offset presentation by clicking the offset numbers.
• If a screen resolution of 800×600 or more is provided you can increase or decrease the editor

window and the information column at the right by clicking and pulling the bottom borders.
• Try clicking the status bar cells (left and right mouse button).

4 Menu Reference

4.1 File Menu

New: This command is used to create a file. The file is initialized with zero bytes and principally
opened in default edit mode. You have to specify the desired file size.

Open: Lets you open one or more files. You may choose an edit mode in case it is not
predetermined in the Tools menu.

Save: Saves the currently displayed file to the disk. In in-place edit mode, using this command is
not necessary. When using the disk editor, this command is named “Save Sectors”.

Save As: Saves the currently displayed file under a different name.

Make Backup Copy/Make Disk Backup: cf. “Backups”

Load Backup: Select a backup file (.whx file) whose contents (either a file or disk sectors) you

 16

would like to restore.

Backup Manager: cf. “Backups”

Execute: Executes the current file if executable, or otherwise the associated program.

Print: Use this command to print a file, disk sectors or RAM contents. Define the printing rang
via offsets. You may select and set up a printer. Choose the character set for printing and accept
or change the suggested font size. The recommended font size is calculated as follows: print
resolution (e.g. 720 dpi) / 6 (e.g. = 120). If desired you may enter a comment which will be
printed at the end.
In case you need more flexibility with printing, you can define a block and copy it using “Edit-
>Copy->Editor Display” as a hex-editor-formatted text into the clipboard. You may paste it in
your favorite word processor. It should look perfect in “Courier New”, 10 pt.

Properties: Lets you edit the size, the time stamp and attributes of a file (under Windows NT as
well of a directory). Valid attributes are: A (archive), S (system), H (hidden), R (read-only). After
entering new values in any area (size, time or attributes), simply press the ENTER key, so the
modifications take effect.

Open Folder: This command is used open several files that meet special requirements at a time.
Select a folder in which to open files. Subfolders are browsed optionally. You may specify a
series of file masks (like “w*.exe;x*.dll”). There is also a switch that permits opening only those
files that contain a certain text or certain hex values. The standard search dialogs are displayed
upon request for this purpose. If WinHex is not set up to work as a viewer or in-place editor (this
can be done in the Tools menu), you may choose an edit mode.

Save Modified Files: All files which have been changed are written to the disk.

Save All Files: All files that have not been opened in view mode are written to the disk.

Exit: Use this command to end WinHex. You will be prompted to save any modifications to files
and disks.

4.2 Edit Menu

Undo: Reverses the last modification, in case the corresponding undo option was activated.

Cut: Removes the current block from the file and puts it into the clipboard. The data following
the block is pulled to the former block beginning.

Copy Block/All/Sector:
• Normal: Copies the current block/the entire file/the current sector into the clipboard. The

contents of the clipboard can be pasted or written later.
• Into New File: Copies the data directly into a new file (not via the clipboard). For instance,

 17

this command can be used to recover a lost file from disk sectors.
• Hex Values: Copies the data as concatenated hex values.
• Editor Display: Copies the data as text, formatted as if it was displayed in the hex editor, i.e.

with an offset, a hex and a text column.
• C/Pascal Source: Copies the data as C/Pascal-formatted source code into the clipboard.

Paste Clipboard: Inserts the clipboard contents at the current position of a file. The file data
following this position is moved forward.

Write Clipboard: Copies the clipboard contents to the current file at the current position. The
data at this position is overwritten. If the end of the file is encountered, the file size is increased
so that the clipboard contents finds place.

Paste Clipboard Into New File: Creates a new file of the clipboard contents.

Empty Clipboard: This command is used to free the memory used by the clipboard.

Remove: Deletes the current block from the file. The data following the block is pulled to the
former block beginning. The clipboard is not affected by this command. If the block is equally
defined in all open files (i.e. it begins and ends at the same offsets), this command can even be
applied to all open files at the same time.

Paste Zero Bytes: Use this command to insert zero bytes at the current position of a file.

Define Block: This function is accessible from the menu and the status bar. A dialog box lets you
specify the desired block limits. This command can also be applied to all open files.

Select All: Defines the beginning and the end of the current file as its block limits.

Convert: cf. Conversions

Modify Data: see below

Fill Block/File/Disk Sectors: see below (Wiping and Initializing)

4.3 Search Menu

Find Text: This command is used to search for a specified string of up to 50 characters in the
current file, disk or RAM section (cf. Search Options).

Find Hex Values: This command is used to search for a sequence of up to 50 two-character hex
values (cf. Search Options).

Replace Text: Use this command to replace occurrences of a specified string with another string

 18

(each of up to 50 characters), cf. Replace Options.

Replace Hex Values: Functions exactly as the Replace Text command, but is applied to a
sequence of hex values (50 at max.), cf. Replace Options.

Combined Search: Provides a complex search mechanism. In the current and in a second file a
common offset is searched, where each file contains the specified respective hex values.

Integer Value: Enter an integer (within the limits of the signed 64-bit integer data type). This
function searches data in the current file, which can be interpreted as this integer.

Floating-Point Value: Enter a floating-point number (e.g. 12.34 = 0.1234 * 102 = 0.1234E2) and
select a floating-point data type. This function searches data in the current file, which can be
interpreted as this floating-point value.

Text Passages: Use this command to look for a sequence of letters (a-z, A-Z), digits (0-9) and/or
punctuation marks. It is useful for instance if you intend to translate text passages hidden
somewhere in a file with executable code.
Set the sensitivity of the search by specifying how long a character sequence must be to be
recognized. Click “Tolerate Unicode characters” in order to force the algorithm to accept zero
bytes between two characters.

Continue Global Search: This command is used to continue a global search operation (i.e. a
search operation applied to all opened files) in the next file.

Continue Search: Lets you continue a search operation in the current file at the current position.

4.4 Position Menu

Go To Offset: Moves the current position to the specified offset. Normally this is done relative to
the beginning of the file (offset 0). You can also move the cursor relative to the current position
(forward or backward) or from the end of the file (backward). An offset can be specified in bytes
(default), words (2 bytes) or doublewords (4 bytes). Press F11 to repeat the last position
movement.

Go To Page/Sector: Browses to the specified page, sector, or cluster. Please note that the data
area on FAT drives starts with cluster #2.

Move Block: Moves the current block selection (not the data within the block) forward or
backward. Specify the distance in bytes. Press ALT+F11 to repeat the last block movement, press
SHIFT+ALT+F11 to reverse the movement. This command may facilitate editing a file that
consists of homogeneous records of a fixed length.

WinHex keeps a history of your offset jumps within a document and allows to go back and
forward in the chain later.

 19

Go To...

Beginning Of File: Display the first page of the current file and moves the current position to
offset 0.

End Of File: Displays the last page of the current file and moves the current position to the last
byte (offset = file size - 1).

Beginning Of Block: Moves the current position to the beginning of the current block.

End Of Block: Moves the current position to the end of the current block.

Mark Position: Marks the current position and thus enables you to find it again later.

Delete Marker: Removes the marker from the screen.

Go To Marker: Moves the current position to the marker set by Mark Position.

Position Manager: see below

4.5 View Menu

Text Display Only: Hides the hexadecimal data display and uses the full width of the editor
window for the ASCII text display.

Hex Display Only: Hides the ASCII text display and uses the full width of the editor window for
the hexadecimal data display.

Record Presentation: When editing subsequent data records of the same size (for instance, table
entries of a database) you may now have WinHex display every other record with a different
background color, as a kind of visual aid. The color can be selected in the General Options dialog.
Also, WinHex offers to display the current record number and the offset within that record
(relative offset) in the status bar, based the record size and the offset of the first record as
specified.
If any of the two record features is enabled, the Go To Offset command allows moving the
current position in units of the current record size.

Show: The Data Interpreter is a small window that provides "translation services" for the data
at the current cursor position. The toolbar is displayed optionally, too. A tab control makes each
edit window accessible with a single mouse click only. The details panel provides in-depth
information on any open object (file, disk, RAM).

Template Manager

 20

Tables: Provides four conversion tables (cf. ANSI ASCII/IBM ASCII).

Lines & Columns

Synchronize Scrolling: Synchronizes up to four tiled windows on identical absolute offsets.
Hold the Shift key when enabling this feature to tile the windows horizontally instead of
vertically.

Synchronize & Compare: Synchronizes up to four windows and visually displays byte value
differences. If no more than two windows are involved, WinHex maintains the initial distance
between the offsets of the first shown byte in these windows when scrolling. Not synchronizing
on absolute offsets is useful for example when comparing two copies of the file allocation table,
which are obviously at different offsets. You may skip to the next or to the previous byte value
difference by clicking the extra buttons that are provided in one of the two edit windows.

Refresh View: Redraws the contents of the current edit window. In case the current file was
updated by an external program, WinHex offers to dismiss any changes made in WinHex and
reload the file from scratch.

4.6 Tools Menu

Disk Editor: See chapter “Disk Editor”.

List Clusters: Available for FAT and NTFS drives. On FAT drives, this command relies on a
recent drive map as generated by the Scan Cluster Chains (Again) command. WinHex searches
clusters that are assigned to a file or directory you specify. To make this work with a directory,
type in the directory name and do not select it in the folder list. The found clusters are listed in a
small separate window. You may click a list item to browse to that cluster number. Try the
context menu to copy the listed clusters off the drive into a new file.

Scan Cluster Chains Again: Available for FAT and NTFS drives. WinHex traverses all cluster
chains and thereby generates a drive map. This enables WinHex to display for each sector which
file or directory it is allocated to. The complete listing of deleted files on NTFS drives in the
directory browser depends on this, too. It is recommended to invoke this command again after file
operations on a drive to keep the information displayed by WinHex up to date. Cf. security
options.

Initialize Free Space: Confidential information is possibly stored in currently unused parts of a
drive as a result of normal delete, copy and save actions. Free space on a drive can be initialized
for security reasons. This effectively overwrites all data in unused parts of the disk and makes it
impossible to recover this data.

Initialize Slack Space: Overwrites slack space (the unused bytes in the respective last clusters of
all cluster chains, beyond the actual end of a file) with zero bytes. This may be used in addition to
"Initialize Free Space" to securely wipe confidential data on a drive or to minimize the space a

 21

compressed disk backup (like a WinHex backup) requires. Close any running or resident program
that may write to the disk prior to using this command.

Initialize MFT Records: On NTFS drives, WinHex can clear all currently unused $Mft (Master
File Table) file records, as they may still contain names and fragments of files previously stored
in them.

Clone Disk: See chapter “Disk Cloning”.

File Retrieval: See Appendix D.

Set Disk Parameters: Using this command on a physical disk, you may override the number of
cylinders, heads, and sectors per track as recognized by WinHex. This can be useful to access
surplus sectors at the end of the disk (in case they were not detected by WinHex), or to adjust the
CHS coordinate system to your needs. Use this command on a logical drive to override the total
number of clusters WinHex detects on that drive. This can prove useful when examining huge
DVDs, which are detected as 2 GB media under Windows 9x.

RAM Editor: See chapter “RAM Editor”.

Invoke Text Editor: Executes an external text editor (selected in the General Options dialog).
Opens the currently open file or currently defined block in that program. If you alter the file or
block using the text editor, WinHex can adopt the changes afterwards.

Invoke Viewer: Executes an external file viewing program (such as Quick View Plus etc.,
selected in the General Options dialog). Opens the current file or block in that program.

Invoke X-Ways Trace: Available only if X-Ways Trace is installed. This software can analyze
the Internet Explorer's index.dat history file and the Windows recycle bin's info2 files.

Calculator: Runs the Windows calculator “calc.exe”. Switching to scientific mode is highly
recommended.

Hex Converter: Enables you to convert hexadecimal numbers into decimal numbers and vice
versa. Simply type in the number and press ENTER.

Tables: Provides four conversion tables (cf. ANSI-/IBM-ASCII).

Analyze Block/File: Scans the data within the current block/the entire file and counts the
occurrences of each byte value (0...255). The result is graphically displayed by proportional
vertical lines. The number of occurrences and the percentage are displayed for each byte value
when moving the mouse over the corresponding vertical line.
Use this command for instance to identify data of unknown type. Audio data, compressed data,
executable code etc. produce characteristic graphics. The 32-bit standard checksum and the
CRC32 of the selected data are also displayed.
Use the context menu of the window to switch zero byte consideration on or off, to print the

 22

analysis window, or to export the analysis to a text file.

Calculate Hash: Calculates one of the following checksums/digest of the entire current file,
disks, or the currently selected block: 8-bit, 16-bit, 32-bit, 64-bit checksum, CRC16, CRC32,
MD5, SHA-1, SHA-256, or PSCHF.

4.7 Specialist Tools Menu

Specialist license only.

Gather Free Space: Traverses the currently open logical drive and gathers all unused clusters in
a destination file you specify. Useful to examine data fragments from previously existing files
that have not been deleted securely. Does not alter the source drive in any way. The destination
file must reside on another drive.

Gather Slack Space: Collects slack space (the unused bytes in the respective last clusters of all
cluster chains, beyond the actual end of a file) in a destination file. Otherwise similar to Gather
Free Space. Works with FAT12, FAT16, FAT32, and NTFS drives. WinHex cannot access slack
space of files that are compressed or encrypted at the file system level.

Gather Inter-Partition Space: Captures all space on a physical hard disk that does not belong to
any partition in a destination file, for quick inspection to find out if something is hidden there or
left from a prior partitioning.

Gather Text: Recognizes text according to the parameters you specify and captures all
occurrences from a file, a disk, or a memory range in a file. This kind of filter is useful to
considerably reduce the amount of data to handle e.g. if a computer forensics specialist is looking
for leads in the form of text, such as e-mail messages, documents, etc. The target file can easily
be split at a user-defined size. This function can also be applied to a file with collected slack
space or free space, or to damaged files in a proprietary format than can no longer be opened by
their native applications, like MS Word, to recover at least unformatted text.

Simultaneous Search: A parallel search facility, that lets you specify a virtually unlimited list of
search terms, one per line. The search terms are either text strings or hex values (specified with a
0x prefix). They are searched simultaneously, and their occurrences can be archived either in the
Position Manager, or in a tab-delimited text file, similar to the disk catalog, which can be further
processed in MS Excel or any database. WinHex will save the offset of each occurrence, the
search term, the name of the file or disk searched, and in the case of a logical drive the cluster
allocation as well! (i.e. the name and path of the file that is stored at that particular offset, if any)
That means e.g. a forensic examiner is now able to systematically search through an entire hard
drive in a single pass for words like - drug
 - cocaine
 - (street synonym #1 for cocaine)
 - (street synonym #2 for cocaine)
 - (street synonym #3 for cocaine)

 23

 - (street synonym #3 for cocaine, alternative spelling)
 - (name of dealer #1)
 - (name of dealer #2)
 - (name of dealer #3)
at the same time! When searching a logical drive, this will narrow down the examination to a list
of files upon which to focus. If you do not have WinHex archive the occurrences, you may use
the F3 key to continue the search.

Create Drive Contents Table: Creates a disk “catalog” of existing and deleted files and
directories on a logical drive or partition, with user-configurable information such as attributes,
all available date & time stamps, size, allocated clusters, hash (checksum or digest), alternate data
streams (which contain hidden data, on NTFS drives only), etc. Extremely useful to
systematically examine the contents of a disk. Allows to limit the search for files of a certain type
using a filename mask (e.g. *.jpg;*.gif). Hash values can only be calculated for existing files.
Internal system files and extensive cluster allocation information can only by listed for NTFS
volumes if you include deleted files in the table. In the column with cluster allocation information
you may also find only a sector in the master file table listed (in which small files are stored
directly). Clusters allocated to alternate data streams are listed in this column following the ADS
name and a colon.

The resulting table can be imported and further processed by databases or MS Excel. Sorting by
date & time stamps will result in a good overview of what a disk has been used for at a certain
time. E.g. the NTFS attribute “encrypted” might quickly reveal what files may turn out to be the
most important ones in a forensic analysis.

Create Directory Contents Table: Works like Create Drive Contents Table, but for a user-
selected directory and its subdirectories only.

Media Details Report: Shows information about the currently active disk or file and lets you
copy it e.g. into a report you are writing. Most extensive on physical hard disks, where details for
each partition and even unallocated gaps between existing partitions are pointed out.

Interpret Image File As Disk: Treats a currently open and active disk image file as either a
logical drive or physical disk. This is useful if you wish to closely examine the file system
structure of a disk image, extract files, etc. without copying it back to a disk. If interpreted as a
physical disk, WinHex can access and open the partitions contained in the image individually as
known from “real” physical hard disks.
WinHex is even able to interpret spanned image files, that is, image files that consist of separate
segments of any size. For WinHex to detect a spanned image file, the first segment may have an
abritrary name and a non-numeric extension or the extension “.000”. The second segment must
have the same base name, but the extension “.001”, the third segment “.002”, and so on. The
DOS cloning tool X-Ways Replica is able to image disks and produce such file segments. This is
useful because the maximum image file size supported by FAT16 and FAT32 is 2 GB or 4 GB,
respectively.

Bates-Number Files: Bates-numbers all the files within a given folder and its subfolders for

 24

discovery or evidentiary use. A constant prefix (up to 13 characters long) and a unique serial
number are inserted between the filename and the extension in a way attorneys traditionally label
paper documents for later accurate identification and reference.

Trusted Download: Solves a security problem. When transferring unclassified material from a
classified hard disk drive to unclassified media, you need to be certain that it will have no
extraneous information in any cluster or sector "overhang" spuriously copied along with the
actual file, since this slack space may still contain classified material from a time when it was
allocated to a different file. This command copies file in their current size, and no byte more. It
does not copy entire sectors or clusters, as conventional copy commands do. Multiple files in the
same folder can be copied at the same time.

Highlight Free Space/Slack Space: Displays offsets and data in softer colors (light blue and
gray, respectively). Helps to easily identify these special drive areas. Works on FAT and NTFS
logical drive and FAT partitions.

4.8 Options Menu

General Options: see below

Undo Options: see below

Security Options: see below

Data Interpreter Options: cf. Data Interpreter

Use As Viewer: If you use WinHex simply for viewing files and you do not need the possibility
to edit them, you can switch on this menu option. All files will be opened in view mode.

In-Place Editor: All files are opened in in-place mode, i.e. all changes are done directly in the
original file.

Character set: Lets you switch between the ANSI ASCII, IBM ASCII, and EBCDIC character
for display and keyboard input. You may also use SHIFT+F7. EBCDIC (originating from IBM
mainframes) is currently not supported by the Print command.

Text Display Only: Hides the hexadecimal data display and uses the full width of the editor
window for the ASCII text display.

Hex Display Only: Hides the ASCII text display and uses the full width of the editor window for
the hexadecimal data display.

 25

4.9 File Manager

Execute: Lets you select a file to execute. If the file itself is not executable, it is opened by the
application it is associated with.

Split: This command creates several destination files using the contents of a single source file.
Specify a split offset for each destination file. The source file is not affected by this function.

Concatenate: Select several source files that are to be copied into one destination file. The source
files are not affected.

Unify: Select two source files and one destination file. The bytes/words from the source files will
be written alternately into the destination file. The first byte/word originates from the source file
that was specified first. Use this function to create a file with odd and even bytes/words
originating from separate files (e.g. in EPROM programming).

Dissect: Select a source file and two destination files. The bytes/words from the source files will
be written alternately into the destination files. The first byte/word will be transfered to the
destination file that was specified first. Use this function to create two separate files each
containing either the odd or the even bytes/words of the original file (e.g. in EPROM
programming).

Compare: This command is used to compare two edit windows (files or disks) byte by byte.
Decide whether different or identical bytes shall be reported. You may indicate how many bytes
to compare. If desired, the operation can abort automatically after having found a certain number
of differences or identical bytes. The report is stored as a text file, whose size might otherwise
grow dramatically.
The comparison starts at the respective offsets specified for each edit window. These offsets may
differ, such that e.g. the byte at offset 0 in file A is compared to the byte at offset 32 in file B, the
byte at offset 1 with the one at offset 33, etc. When you select an edit window for comparison, the
current cursor position will automatically be entered in the “From offset” box.
There is yet another compare function in WinHex: you may also compare edit windows visually
and synchronize scrolling in these windows (see View menu).

Copy: Copies a file.

Move: Use this command to move and/or rename an existing file. The source file is deleted.

Wipe Securely: This command is used to erase the contents of one or more files irrevocably,
such that they cannot be restored by WinHex or other special data recover software. Each selected
file is overwritten according to the current settings, shortened to a length of zero and then deleted.
In the full version of WinHex the name entry of the file is erased as well. Even professional
attempts to restore the file will be futile. Therefore this command should be applied to files with
confidential contents, which is to be destroyed.

 26

4.10 Window Menu

Window Manager: Displays all windows and provides “instant window switching”
functionality. You may also close windows and save files.

Save Arrangement As Project: Writes the current window constellation into a project file. From
the Start Center you will then be able to load the project and restore editing positions in each
document at any time, to conveniently continue your work right where you left it or to begin your
work in case of a recurring task.

Close All: Closes all windows and thus all open files, disks and RAM sections.

Close All Without Prompting: Closes all windows and thus all opened files and disks without
giving you the opportunity to save your modifications.

Cascade/Tile: Arranges the windows in the aforementioned way.

Minimize All: Minimizes all windows.

Arrange Icons: This command arranges minimized windows.

4.11 Help Menu

Contents: Displays the contents of the program help.

Setup: Lets you switch between the English, the German, the French, the Spanish, the
Portuguese, and the Italian user interface.

Initialize: Use this command to restore the default settings of this program.

Uninstall: Use this command to remove WinHex from your system. This works properly even if
you did not install WinHex using the setup program.

Online: Opens the WinHex homepage, the support forum, the Knowledge Base, or the newsletter
subscription page in your browser.

About WinHex: Displays information about WinHex (the program version, your license status,
and more).

4.12 Windows Context Menu

The Windows shell displays the context menu when the user clicks an object with the right mouse

 27

button. WinHex is present in the context menu only if you enable to corresponding option (see
“General Options”).

Edit with WinHex: Opens the selected file in WinHex.

Open in WinHex: Lets you open all files of the selected folder in WinHex, just as the Open
Special command of the File menu.

Edit Disk: Opens the selected disk in the disk editor of WinHex. If you hold the SHIFT key,
instead of the selected logical drive the corresponding physical disk is opened, if any. (The latter
feature is not available under Windows NT.)

WinHex provides its own context menus on the status bar, the Data Interpreter, and in the
position manager.

5 Options

5.1 General Options

1st column:

• At startup, WinHex can optionally show the Start Center or restore the last window

arrangement (all windows with their sizes and the positions as you left them in the precedent
WinHex session).

• Specify the number of recently opened documents to remember and to list in the Start Center

(255 at max.). Up to 9 of them are also listed at the end of the File menu.

• In addition to which documents (file or disk) you had recently opened, WinHex can optionally

also remember the last editing positions and the block (if defined).

• You may have WinHex appear in the Windows context menu. The shell displays the context

menu when the user clicks an object with the right mouse button. WinHex provides menu
items for files, folders and disks. If this option is not fully selected, there is no menu item for
files.

• The option Allow multiple program instances lets you execute WinHex more than once at a

time. If it is not enabled, WinHex puts the main window of the running instance into the
foreground instead of creating a new program instance.

• Do not update file time means that WinHex will not change the last write time when a

modified file is saved.

 28

• If Check for surplus sectors is disabled, WinHex will not try to access surplus sectors when a
physical hard disk is opened. When additional sectors are detected, WinHex will remember
them the next time you open the disk. You may enforce a new check by holding the Shift key
while opening the disk. Checking for surplus sectors may cause very long delays, strange
behavior or even damage to the Windows installation on some very few systems. Only under
Windows XP surplus sectors are included automatically, which renders this option obsolete.

• By default, edit windows are not opened in a maximized state.

• On a right click, WinHex can bring up a special context menu, the regular edit menu, or

define the end of the current block.

• If you select Show file icons, the icons stored in a file are shown in the information column.

This increases memory requirements and delays the opening of files. If a file contains no icons,
the icon of the file type is shown, except this option is not “fully” selected.

• The ENTER key can be used to enter up to four two-digit hex values. A useful example is

0x0D0A, which is interpreted as an end-of-line marker in the Windows world (Unix: 0x0D).
The Start Center could then still be opened using SHIFT+ENTER.

• Decide whether you want to use the TAB key to switch from text to hexadecimal mode and

vice versa or to enter the TAB character (0x09). In any case, TAB+SHIFT can be pressed to
switch the current mode.

2nd column:

• Specify the folder in which to create temporary files.

• Specify the folder in which to create backup files (.whx).

• Specify the folder in which to create project files (.prj).

• Specify a path to your favorite text editor. WinHex offers you to view reports that result from

file comparisons using this program.

• Specify a path to your favorite viewer (cf. Tools menu)

• Decide the number of bytes per line in an edit window. Common values are 16 or 32

(depending on the screen resolution).

• Choose how many bytes shall be displayed in a group. Powers of 2 serve best for most

purposes.

3rd column:

 29

• Offsets can be presented and prompted for in a decimal or hexadecimal notation. This setting

is valid for the entire program.

• When using the RAM editor it may be reasonable to have WinHex display virtual addresses

instead of zero-based offsets. This is always done in hexadecimal notation. The dialog window
of the Goto Offset command will also prompt for virtual addresses.

• If line-by-line scrolling is selected, page and sector separators may be displayed. If this

option is enabled partially, only sector separators are displayed.

• Scrolling can be done either line by line or pagewise.

• Specify how many lines to scroll when rolling the mouse wheel (if available).

• Use Windows default colors should be self-explanatory.

• Select a color used as the background of the current block. You can only change the color if

the option “Use Windows default colors” is switched off.

• Select a color used as the background of every other fixed-length record, if record

presentation is enabled (see Position menu).

• You may want WinHex to hilite modified bytes, i.e. display altered parts of a file, disk, or

memory in a different color, so you can distinguish between original data and changes you
have made so far. You may select the hilite color.

• You may choose a font for ANSI ASCII mode. The WinHex font implements the full

Windows character set (even characters such as the ™ and € symbols and diverse quotation
marks).

• Display Windows-styled progress bar replaces the WinHex progress bar with the typical

progress bar common to most Windows programs.

• Last not least, you may select one of several different dialog window and button styles.

Factory settings of all options can be restored using the Initialize command of the Help menu.

5.2 Undo Options

The availability of the “Undo” command depends on the following options:

• Specify how many sequential actions are to be reversed by the Undo command. This option

does not affect the number of reversible keyboard inputs, which is only limited by the

 30

available RAM.

• In order to save time and space on your hard disk, you can specify a file size limit. If a file is

larger than this limit, backups will not be created and the Undo command is not available
except for keyboard input.

• Automatically created backups for the internal use with the Undo command are deleted by

WinHex when closing the file, if the corresponding option is fully selected. If it is partially
selected, they are deleted when WinHex terminates.

• For all kinds of editing operations you choose whether they should be reversible or not. If so,

an internal backup is created before the operation takes place.

5.3 Security & Safety Options

The Sector reading cache accelerates sequential disk access by the disk editor. This option is
recommended particularly when scrolling through CD-ROM and floppy disk sectors, since the
number of necessary physical accesses is significantly reduced.

Enabling the option Inspect clusters automatically causes WinHex to automatically traverse the
cluster chains of a FAT or NTFS drive if such a drive is opened in WinHex and the required drive
map does not yet exist. Using the drive map, WinHex is able to display each sector’s and cluster’s
allocation (for storing which file it is used). Use the command “Inspect clusters” of the Tools
menu to update the drive map.

With the option Keep drive map for next session enabled, all information on FAT and NTFS
drives collected by WinHex remains in the folder for temporary files even when WinHex
terminates. WinHex can reuse drive maps during later program runs.

Use the option Check for virtual memory alteration to make sure the RAM editor inspects the
structure of virtual memory every time before reading from or writing to it. If the structure has
changed, a possible read error is prevented. Especially under Windows NT the checking may
result in a loss of speed. When editing the “entire memory” of a process, WinHex generally never
checks for alterations before reading, even if this option is enabled.

A hash can be calculated automatically for each file when opening it. It is then displayed in the
information column at the right. Checksums and digests can also be calculated using the Tools
menu.

Before modifications to an existing file are saved (i.e. before the file is updated), you are
prompted for confirmation. To inhibit this behavior of WinHex, switch off the corresponding
option.

When manually restoring backups, a restoration report is shown only in case the backup
contains a digest or the backup is corrupt. Optionally, you may have WinHex always display the

 31

report always after restoration. In this case even the digest will be displayed.

The key that is required for encryption and decryption can be entered in a normal edit box.
Optionally, you enter it blindly (asterisks are displayed instead of the actual characters). In this
case you have to confirm the key in a second edit box to detect typos.

By default, the key is kept in main memory (in an encrypted state) as long as WinHex is
running, so that you do not have to type it again and again if you use it several times. Possibly you
prefer WinHex to erase the key after use.

Decide whether or not WinHex shall prompt before executing a script, or only before executing
a script via the command line.

5.4 Search Options

Case sensitive: If this option is enabled, WinHex distinguishes between upper and lower case,
e.g. so that “Option” is not found in the word “optionally”.

Unicode character set: The specified text is searched using the 256 ANSI-ASCII-equivalent
Unicode characters, where the high-order byte is 0. The simultaneous search allows to search for
the same text at the same time in Unicode and ASCII. For this to work, the checkbox needs to be
“half” checked.

You may specify a wildcard (one character or a two-digit hex value), which represents one byte.
For example this option can be used to find “Speck” as well as “Spock” when searching for
“Sp?ck” with the question mark as the wildcard.

Only whole words: The searched string is recognized only, if it is separated from other words,
e.g. by punctuation marks or blanks. If this option is enabled, “tomato” is not found in
“automaton”.

Search direction: Decide whether WinHex shall search from the beginning to the end, or
downwards or upwards from the current position.

Condition: Offset modulo x = y: The search algorithm accepts search string occurrences only at
offsets that meet the given requirements. E.g. if you search for data that typically occurs at the
10th byte of a hard disk sector, you may specify x=512, y=10. If you are looking for DWORD-
aligned data, you may use x=4, y=0 to narrow down the number of hits.

Search in block only: The search operation is limited to the current block.

Search in all opened files: The search operation is applied to all opened files. Press F4 to
continue the search in the next file. If “Search in block only” is enabled at the same time, the
search operation is limited to the current block of each file.

 32

Count occurrences/Save occurrence positions: Forces WinHex not to show each single
occurrence, but to count them. If this option is fully enabled, WinHex will enter all occurrences
into the position manager.

Search for “non-matches”: In “Find Hex Values” you may specify a single hex value with an
exclamation mark as a prefix (e.g. !00) to make WinHex stop when it encounters the first byte
value that differs.

5.5 Replace Options

Prompt when found: WinHex awaits your decision when an occurrence has been found. You
may either replace it, continue or abort the search.

Replace all occurrences: All occurrences are replaced automatically.

Case sensitive: The characters that are to be replaced are searched using this option (cf. Search
Options).

Unicode character set: The specified characters are searched and replaced in Unicode format (cf.
Search Options).

You may specify one character or a two-digit hex value as a wildcard. This is usually done in the
search string. If the substitute contains a wildcard, the character at the corresponding position in
an occurrence will not be changed. Thus, “black” and “block” can be replaced simultaneously
with “crack” and “crock” (enter “bl?ck” and “cr?ck”).

Only whole words: The searched string is recognized only if it is separated from other words e.g.
by punctuation marks or blanks. If this option is enabled, “tomato” is not replaced in
“automaton”.

Search direction: Decide whether WinHex shall replace from the beginning to the end, or
downwards or upwards from the current position.

Replace in block only: The replace operation is limited to the current block.

Replace in all opened files: The replace operation is applied to all files not opened in view
mode. If “Replace in block only” is enabled at the same time, the replace operation is limited to
the current block of each file.

Hint:

WinHex is able to replace one string or hex value sequence with another one that has a different
length. You will be prompted, which of the following methods shall be applied:

1st method: The data behind the occurrence is moved due to length difference. So the file size is

 33

changed. This method must not be applied to certain file types, such as executable files. It is even
possible to specify nothing as the substitute, which means all occurrences will be removed from
the file!

2nd method: The substitute is written into the file at the position of the occurrence. If the
substitute is shorter than the searched character sequence, the exceeding characters will remain in
the file. Otherwise even the bytes behind the occurrence will be overwritten (as far as the end of
the file is not reached). The file size is not affected.

6 Miscellaneous

6.1 Block

You can mark a part of an open file as a “block”. This part can be manipulated by several
function in the edit menu just as selections in other Windows programs. If no block is defined,
these functions usually are applied to the whole file.

The current position and size of the block are displayed in the status bar. Double-clicking the
right mouse button or pressing the ESC key clears the block.

6.2 Modify Data

Use this command to modify the data within the block or within the whole file, in case no block
is defined. In this version of WinHex, four types of data modifications are available. Either a
fixed integer number is added to each element of the data, the bits are inverted, a constant is
XORed with the data (a simple kind of encryption), ORed, or ANDed, bits are shifted logically,
or bytes are swapped. By shifting bits, you can simulate inserting or removing single bits at the
beginning of the block.

Swap Bytes

This command assumes all data to consist of 16-bit elements (32-bit elements resp.) and swaps
high-order and low-order bytes (and high-order and low-order words resp.). Use it in order to
convert big-endian into little-endian data and vice versa.

Addition

Specify a positive or negative, decimal or hexadecimal number, which is to be added to each
element of the current block. An integer format defines size (1, 2 or 4 bytes) and type (signed or
unsigned) of an element.

There are two ways how to proceed if the result of the addition is out of the range of the selected

 34

integer format. Either the range limit is assumed to be the new value (I) or the carry is ignored
(II).

Example: unsigned 8-bit format
I. FF + 1 → FF (255 + 1 → 255)
II. FF + 1 → 00 (255 + 1 → 0)

Example: signed 8-bit format
I. 80 - 1 → 80 (-128 - 1 → -128)
II. 80 - 1 → 7F (-128 - 1 → +127)

• If you decide to use the first method, WinHex will tell you, how often the range limit has been

exceeded.

• The second method makes sure the operation is reversible. Simply add -x instead of x based on

the same integer format to recreate the original data.

• When using the second method it does not make a difference whether you choose a signed or

an unsigned format.

6.3 Conversions

WinHex provides the Convert command of the Edit menu for easy conversions of different data
formats and for encryption and decryption. The conversion can optionally be applied to all
opened files instead of only the currently displayed one. The formats marked with an asterisk (*)
can only be converted as a whole file, not as a block. The following formats are supported:

• ANSI ASCII, IBM ASCII (two different ASCII character sets)
• EBCDIC (an IBM mainframe character set)
• Lowercase/uppercase characters (ANSI ASCII)
• Binary* (raw data)
• Hex ASCII* (hexadecimal representation of raw data as ASCII text)
• Intel Hex* (=Extended Intellec; hex ASCII data in a special format, incl. checksums etc.)
• Motorola S* (=Extended Exorcisor; ditto)

Please note:
• When converting Intel Hex or Motorola S data, the internal checksums of these formats are not

checked.
• Depending on the file size, the smallest possible output subformat is chosen automatically.

Intel Hex: 20-bit or 32-bit. Motorola S: S1, S2, or S3.
• When converting from binary to Intel Hex or Motorola S, only memory regions not filled with

hexadecimal FFs are translated, to keep the resulting file compact.
• Some conversion types can only be applied to whole files.

 35

Encryption/Decryption

Specify a string consisting of 1-16 characters as the encryption/decryption key. The more
characters you enter, the safer is the encryption. The key itself is not used for encryption and
decryption, instead it is digested to the actual key. The key is not saved on your hard disk. If the
corresponding security option is enabled, the key is stored in an encrypted state in the RAM as
long as WinHex is running.

It is recommended to specify a combination of at least 8 characters as the encryption key. Do not
use words of any language, it is better to choose a random combination of letters, punctuation
marks, and digits. Note that encryption keys are case sensitive. Remember that you will be unable
to retrieve the encrypted data without the appropriate key. The decryption key you enter is not
verified before decrypting.

The encryption algorithm is “Pukall Cipher 1” (PC 1), using a 128-bit key (=the 128-bit digest of
the key you specify).

6.4 Wiping and Initializing

For securely erasing (shredding) data, and also simply for filling files or disk sectors with certain
byte values, WinHex offers the following options:

Fill with hex values: Specify either 1, 2, 3, 4, 5, 6, 12, 15, or 16 two-character hex values, which
will be copied repeatedly into the current block, the entire file or all disk sectors, respectively.

Fill with random bytes: Specify a decimal interval (0 to 255 at max.) for random numbers,
which will be copied repeatedly into the current block, the entire file or all disk sectors,
respectively. The random bytes are Laplace-distributed.

In case in all open files either a block or no block is defined, this command can optionally be
applied to all these files at the same time.

To maximize security, if you wish to totally wipe (sanitize) slack space, free space, unused NTFS
records, or an entire media, you may want to apply more than one pass for overwriting disk space
(up to three).

According to the Clearing and Sanitization Matrix, the standard outlined in the U.S. Department
of Defense (DoD) 5220.22-M operating manual, method "c", a hard disk or floppy disk can be
cleared by overwriting (once) all addressable locations with a single character. This is usually the
hexadecimal value 0x00, but can be any other value. To sanitize hard disks according to method
"d", overwrite all addressable locations with a character, its complement, then a random
character, and verify. (This method is not approved by the DoD for sanitizing media that contain
top secret information.)

The "DoD" button configures WinHex for sanitization, such that it will first overwrite with 0x55

 36

(binary 01010101), then with its complement (0xAA = 10101010), and finally with random byte
values.

The "0x00" button configures WinHex for simple initialization, wiping once with zero bytes.

6.5 Disk Cloning

The command “Clone Disk” is part of the Tools menu. This function copies a defined number of
sectors from a source to a destination disk (or alternatively from a disk image file or to a disk
image file). Both disks must have the same sector size. In order to effectively duplicate a drive
(i.e. in order to copy all sectors of the drive), enable the appropriate option, so the correct number
of sectors is entered automatically. The destination disk must not be smaller than the source disk.

Disk cloning offers options that control the behavior when bad sectors are encountered on the
source disk:
• By default, you are notified of the error and prompted for either continuing or aborting the

operation. “Log procedure silently” creates a complete log file of the entire operation in the
folder for temporary files, including a report on unreadable sectors, and prevents WinHex from
reporting each unreadable sector separately. This may prove useful e.g. for computer forensics.

• WinHex can either leave a destination sector that corresponds to a damaged source sector
unchanged or fill it with an ASCII pattern you specify (e.g. your initials, or something like
“BAD ”). Leave the pattern edit box blank to fill such sectors with zero bytes. BTW, the
chosen pattern is also used to display a bad sector's contents in the disk editor.

• Bad sectors often occur in contiguous groups, and each attempt to read a bad sector usually
takes a long time. You may have WinHex avoid such damaged disk areas. When a bad sector
is encountered, WinHex can skip a number of subsequent sectors you specify (25 by default).
This is useful if you wish to accelerate the cloning process and if you do not care about some
actually readable sectors not making it to the clone.

Regular disk cloning is not an option if you want to duplicate a disk in a removable drive (e.g. a
floppy disk) with only one removable drive present. The correct concept for this application is
disk imaging, where the data is first stored in an image file. The image can then be copied to a
different disk. The result is the same as disk cloning.

There are two ways to image a disk:
• If convenience is your primary concern, use the backup functionality. For easy recovery, a

backup file includes information on its contents: sector numbers, source disk etc.
• The disk cloning dialog allows copying sectors from a disk into a raw, headerless image file

and later vice-versa. Combined with the silent “log file” mode, this is preferable to creating a
backup in case of defective sectors on the source disk.

Cloning or imaging the drive that contains the active Windows installation can produce
inconsistent copies. At any rate, please make sure the source drive is not written to during the
cloning/imaging/backup/restoration procedure by any other program or by Windows itself. It is
recommended to move the TEMP directory to a different drive. The swap file should be created

 37

on a different drive, too. Alternatively, completely disabling swapping in the control panel may
help as well.

Make sure no other program or service can write to the partition you are going to clone. E.g.
check for defragmentation tools running in the background and deactivate them for the duration
of the cloning/backup/restoration. Under Windows NT/2000/XP it is recommended to unmount
the partition as a logical drive/drive letter, or at least make the logical drive temporarily read-only
(NTFS only).

After cloning a logical NTFS drive, you may need to reboot your system or run “chkdsk /f” on the
target drive in order to see the new contents in Windows (this clears all of Windows’ internal
buffers).

Cloning or imaging in WinHex makes exact sector-wise copies. It cannot dynamically change
partition sizes or adapt to destination disks larger or smaller than the source disks. This can later
be done by PartitionMagic, PartitionStar etc.

6.6 Position Manager

The position manager maintains a list of file or disk offsets and corresponding descriptions. You
may enter new positions and edit or delete existing entries. If a special offset in a file is important
to you because you have to edit it more than once, you can enter it into the position manager. This
makes it a lot easier to find it again later, and you do not have to remember it. An appropriate
description for instance could be “Data chunk begins here!”.

Click the right mouse button in order to see a context menu. The context menu provides
additional commands. You may delete, load or save positions, even export the list as HTML. If
the position list was changed, it is saved in the file WinHex.pos when exiting WinHex.

The position manager window can be minimized, so you may switch between the positions in the
selected order by pressing CTRL+LEFT and CTRL+RIGHT.

The complete documentation of the POS file format is available from the WinHex homepage at
http://www.winhex.com.

6.7 Backups

The command Make Backup Copy/Make Disk Backup in the File menu provides a dialog
window enabling you to create a backup (safety copy) of the current file or of sectors of the
current disk. The backup is stored as a .whx file.

When creating a backup of a physical disk or logical drive (so-called drive imaging), you have to
specify which sectors to save. By default, all sectors starting with the current position are

 38

selected. You may have WinHex split the backup into volumes of a fixed size. Partial backups of
650 MB e.g. are suitable for archiving drive images on CD-R. In order to make the backup as
small as possible, it is recommended to initialize unused space before drive imaging (cf. chapter
“Disk Editor”). This is because sectors that consists but of zero values barely increase the backup
size when compression is enabled.

If you have WinHex assign a filename for the .whx file automatically, the file will be created in
the folder for backups (cf. General Options), named with the next free “slot” according to the
Backup Manager's naming conventions (“xxx.whx”), and will be available in the Backup
Manager. If you explicitly specify a path and a filename, you can restore the backup later using
the “Load Backup” command, and in case of split backups WinHex will automatically append the
volume number to the filenames.

You may specify a textual description of the backup.

The .whx format is able to store a checksum or a digest of the original data, and it optionally
provides encryption. The calculation of digests and encryption both slow down the backup
creation considerably, so these functions should not be used unless required for security purposes.
When restoring a digested backup with no warning showing up in WinHex, you can be sure about
the data contained in the backup has not been tampered with.

The encryption algorithm is “Pukall Cipher 1” (PC 1), using a 128-bit key that is digested from
the 256-bit concatenation of the 128-bit digest of the key you enter and 128 bits random input.
The random input is saved in the .whx file for later decryption.

WinHex makes use of the “Deflate” compression algorithm that is part of the popular general-
purpose library zlib. This algorithm consists of LZ77 compression and Huffman coding. The
compression ratio is the same as ZIP.

The complete documentation of the .whx file format is available from the WinHex homepage at
http://www.winhex.com.

6.8 Backup Manager

Displays a list of previously created backups. The items can be listed in a chronological or
alphabetical order. Choose the backup you would like to restore. When that function completes,
the original file or sector contents is shown.

You can restore the backup
• into a temporary file first such that you will still need to save it,
• directly and immediately to the disk, or
• to a new file.

In the case of disk sectors you may also wish to specify a different destination disk or a different
destination sector number. It is also possible to only extract a subset of the sectors from the

 39

backup. (However, sectors at the beginning of a compressed backup cannot be left out during
restoration.) If the backup was saved with a checksum and/or a digest, data authenticity is verified
before the sectors will be directly written to the disk.

The backup manager also allows to delete backups which you do not need any longer. Backups
that were created for internal use by the Undo command can be deleted by WinHex automatically
(cf. Undo Options).

Backup files that are maintained by the backup manager are located in the folder specified in the
General Options dialog. Their filenames are “xxx.whx” where xxx is a unique three-digit
identification number. This number is displayed in the last column of the backup manager list.

6.9 Data Interpreter

The Data Interpreter is a small window that provides “translation services” for the data at the
current cursor position. The options dialog lets you specify the data types to interpret. These are
currently seven integer data types (by default in decimal notation, optionally hexadecimal or
octal), the binary format (8 bits of a byte), four floating-point data types, assembler opcodes
(Intel®), and five date types.

The Data Interpreter is also capable of translating all data types (except assembler opcodes) back
into hex values. Double-click a number in the Data Interpreter window, enter a new value and
press ENTER. The Data Interpreter will enter the corresponding hex values into the edit window
at the current position.

Right-click the data interpreter to bring up a context menu. This will let you switch between big-
endian and little-endian translation of integer and floating-point data.

Hints:

• Some hex values cannot be translated into floating-point numbers. For these hex values the

Data Interpreter displays NAN (not a number).
• Some hex values cannot be translated into valid dates. The value ranges of different date types

are more or less narrow.
• There are redundancies in the Intel® instruction set, which show up in the Data Interpreter as

duplication of both hex opcodes and mnemonics. Floating-point instructions are generally
displayed as F***.

• More detailed reference can be found in the Intel® Architecture Software Developer’s Manual
Volume 2: Instruction Set Reference, available in PDF format on the Internet.

 40

Appendix A: Template Definition

1 Header

The header of a template definition has the following format:

template "title"
[description "description"]
[applies_to (file/disk/RAM)]
[fixed_start offset]
[sector-aligned]
[requires offset "hex values"]
[big-endian]
[hexadecimal/octal]
[read-only]
[multiple [fixed overall size]]
// Put any general comments to the template here.
begin

variable declarations
end

Tags in brackets are optional. The order of the tags is irrelevant. Expressions must only be
enclosed in inverted commas if they contain space characters. Comments may appear anywhere in
a template definition. Characters following a double slash are ignored by the parser.

The keyword applies_to must be followed by one and only one of the words file, disk, or
RAM. WinHex issues a warning if you are going to use a template on data from a different source.

While by default templates start interpreting the data at the current cursor position when applied,
an optional fixed_start statement ensures interpretation always starts at the specified absolute
offset within the file or disk.

If the template applies to a disk, the keyword sector-aligned ensures the template
interpretation starts at the beginning of the current sector, regardless of the exact cursor position.

Similar to the applies_to statement, the requires statement enables WinHex to prevent an
erroneous application of a template definition to data that does not match. Specify an offset and a
hex-value chain of an arbitrary length that identifies the data for which the template definition
was intended. For example, a valid master boot record can be recognized by the hex values
55 AA at offset 0x1FE, an executable file by the hex values 4D 5A (“MZ”) at offset 0x0. There
may be multiple applies_to statements in a template definition header, which are all
considered.

The keyword big-endian causes all multi-byte integer and boolean variables in the template
definition to be read and written in big-endian order (high-order byte first).

 41

The keyword hexadecimal causes all integer variables in the template definition to be displayed
in hexadecimal notation.

The keyword read-only ensures that the template can only be used to examine, but not to
manipulate data structures. The edit controls within the template will be grayed out.

If the keyword multiple is specified in the header, WinHex allows browsing to neighboring
data records while displaying the template. This requires that WinHex has knowledge of the
record's size. If it is not specified as a parameter to the multiple statement, WinHex assumes
the overall size of a template structure (=record) to be the current position at the end of the
template interpretation less the base editing position. If this is a variable size, i.e. array sizes or
move parameters are determined dynamically by the value of variables, WinHex cannot browse to
precedent data records.

2 Body: Variable Declarations

The body of a template definition mainly consists of variable declarations, similar to those in
programming languages. A declaration has the basic form

type "title"

where type can be one of the following:

• int8, uint8 = byte, int16, uint16, int32, uint32, int64,
• binary,
• float = single, real, double, longdouble = extended,
• char, char16, string, string16,
• boole8 = boolean, boole16, boole32
• hex,
• DOSDateTime, FileTime, OLEDateTime, SQLDateTime, UNIXDateTime =

time_t, JavaDateTime

title must only be enclosed in inverted commas if it contains space characters. title must not
consist only of digits. WinHex does not distinguish between upper and lower case characters in
titles. 41 characters are used to identify a variable at most.

type can be preceded by at most one member of each of the following modifier groups:

big-endian little-endian
hexadecimal decimal octal
read-only read-write

These modifiers only affect the immediately following variable. They are redundant if they appear
in the header already.

 42

The number at the end of a type name denotes the size of each variable (strings: of each character)
in bits. With char16 and string16, WinHex supports Unicode characters and strings.
However, Unicode characters other than the first 256 ANSI-equivalent characters are not
supported. The maximum string size that can be edited using a template is 8192 bytes.

The types string, string16, and hex require an additional parameter that specifies the number
of elements. This parameter may be a constant or a previously declared variable. If it is a
constant, it may be specified in hexadecimal format, which is recognized if the number is
preceded by 0x.

You may declare arrays of variables by placing the array size in square brackets next to the type
or the title. Specify "unlimited" as the array size to make the template stop only when the end of
file is encountered. The following two lines declare a dynamically sized ASCII string, whose
length depends on the preceding variable:

 uint8 "len"

char[len] "A string"

The same could be achieved by the following two declarations:

 byte "len"

string len "A string"

The character “~” can be used as placeholder for later replacement with the actual array element
number (see below). This does not apply to arrays of char variables, since they are automatically
translated into a string.

Please note that in the current version templates are not able to “calculate”, so operators such as
“+” and “*” must not be used neither in parameters nor in array size expressions.

3 Body: Advanced Commands

When enclosed in braces, several variable declarations comprise a block that can be used
repeatedly as a whole. Note, however, that blocks must not be nested in the current
implementation. The character ~ can be used in a variable’s name as a placeholder for later
replacement with the actual repetition count. The optional numbering statement defines where
to begin counting (0 by default).

 numbering 1

{
byte "len"
string len "String No. ~"
}[10]

In this example the actual variable names in the template will be “String No. 1”, “String No. 2”,
..., “String No. 10”. Instead of a constant number of repetitions (10 in this example), you may also

 43

specify “unlimited”. In that case WinHex will repeat the block until the end of file is encountered.

In order to facilitate reading and navigating the template, you may define groups of variables that
are separated by empty space in the dialog box:

 section "...Section Title..."

...
endsection

The section, endsection, and numbering statements do not advance the current position in
the data to be interpreted.

There are two commands that do not declare variables either, but are explicitly used to change the
current position. This can be done to skip irrelevant data (forward movement) or to be able access
certain variables more than once as different types (backward movement). Use the move n
statement to skip n bytes from the current position, where n may be negative. goto n browses to
the specified absolute position from the beginning of the template interpretation (must be
positive).

The following example demonstrates how to access a variable both as a 32-bit integer and as a
four-part chain of hex values:

 int32 "Disk serial number (decimal)"

move -4
hex 4 "Disk serial number (hex)"

Appendix B: Script Commands

Script commands are case-insensitive. Comments may occur anywhere in a script file and must be
preceded by two slashes. Parameters may be 255 characters long at most. Where in doubt because
hex values, text strings (or even integer numbers) are accepted as parameters, you may use
inverted commas (quotation marks) to enforce the interpretation of a parameter as text. Inverted
commas are required if a text string or variable name contains one or more space characters, so
that all characters between the inverted commas are recognized as constituting one parameter.

The following is a description of currently supported script commands, including example
parameters.

Create "D:\My File.txt" 1000
Creates the specified file with an initial file size of 1000 bytes. If the file already exists, it is
overwritten.

Open "D:\My File.txt"
Open "D:*.txt"

 44

Opens the specified file(s).

Open C:
Open D:
Opens the specified logical drive.

Open 80h
Open 81h
Open 9Eh
Opens the specified physical media. Floppy disk numbering starts with 00h, fixed and removable
drive numbering with 80h, optical media numbering with 9Eh.

Optionally, you may pass a second parameter with the Open command that defines the edit mode
in which to open the file or media ("in-place" or "read-only").

CreateBackup
Creates a backup of the active file in its current state.

CreateBackupEx 0 100000 650 true "F:\My backup.whx"
Creates a backup of the active disk, from sector 0 through sector 1,000,000. The backup file will
be split automatically at a size of 650 MB. Compression is enabled (“true”). The output file is
specified as the last parameter.
If the backup file should not be split, specify 0 as the third parameter. To disable compression,
specify “false”. To have the Backup Manager automatically assign a filename and place the file in
the folder for backup files, specify "" as the last parameter.

Goto 0x128
Goto MyVariable
Moves the current cursor position to the hexadecimal offset 0x128. Alternatively, an existing
variable (up to 8 bytes large) can be interpreted as a numeric value, too.

Move -100
Moves the current cursor position 100 bytes back (decimal).

Write "Test"
Write 0x0D0A
Write MyVariable
Writes the four ASCII characters "Test" or the two hexadecimal values "0D0A" at the current
position (in overwrite mode) and moves the current position forward accordingly (i.e. by 4 bytes).
Can also write the contents of a variable specified as the parameter.

Insert "Test"
Functions just as the "Write" command, but in insert mode. Must only be used with files.

Read MyVariable 10
Reads the 10 bytes from the current position into a variable named "MyVariable". If this variable

 45

does not yet exist, it will be created. Up to 16 different variables allowed. Another way to create a
variable is the Assign command.

ReadLn MyVariable
Reads from the current position into a variable named "MyVariable" until the next line break is
encountered. If the variable already exists, its size will be adjusted accordingly.

Close
Closes the active window without saving.

CloseAll
Closes all windows without saving.

Save
Saves changes to the file or disk in the active window.

SaveAs "C:\New Name.txt"
Saves the file in the active window under the specified path. Specify "?" as the parameter to let
the user specify the destination.

SaveAll
Saves changes in all windows.

Exit
Terminates script execution and ends WinHex.

ExitIfNoFilesOpen
Aborts script execution if no files are already opened in WinHex.

Block 100 200
Block "My Variable 1" "My Variable 2"
Defines the block in the active window to run from offset 100 to offset 200 (decimal).
Alternatively, existing variables (each up to 8 bytes large) can be interpreted as numeric values.

Block1 0x100
Defines the block beginning to be at the hexadecimal offset 0x100. A variable is allowed as the
parameter as well.

Block2 0x200
Defines the block end to be at the hexadecimal offset 0x200. A variable is allowed as the
parameter as well.

Copy
Copies the currently defined block into the clipboard. If no block is defined, it works as known
from the Copy command in the Edit menu.

 46

Cut
Cuts the currently defined block from the file and puts it into the clipboard.

Remove
Removes the currently defined block from the file.

CopyIntoNewFile "D:\New File.dat"
CopyIntoNewFile "D:\File +MyVariable+.dat"
Copies the currently defined block into the specified new file, without using the clipboard. If no
block is defined, it works as known from the Copy command in the Edit menu. Can copy disk
sectors as well as files. The new file will not be automatically opened in another edit window.
Allows an unlimited number of "+" concatenations in the parameter. A variable name will be
interpreted as an integer if not be larger than 2^24 (~16 Mio.). Useful for loops and file recovery.

Paste
Pastes the current clipboard contents at the current position in a file, without changing the current
position.

WriteClipboard
Writes the current clipboard contents at the current position in a file or within disk sectors,
without changing the current position, by overwriting the data at the current position.

Convert Param1 Param2
Converts the data in the active file from one format into another one. Valid parameters are ANSI,
IBM, EBCDIC, Binary, HexASCII, IntelHex, and MotorolaS, in combinations as known from the
conventional Convert menu command.

Encrypt "My Password"
Encrypts the active file or disk, or selected block thereof, with the specified key (up to 16
characters long) using the PC1 algorithm (128 bit).

Decrypt "My Password"
Decrypts the active file or disk.

Find "John" [MatchCase MatchWord Down Up BlockOnly SaveAllPos Unicode Wildcards]
Find 0x1234 [Down Up BlockOnly SaveAllPos Wildcards]
Searches in the active window for the name John or the hexadecimal values 0x1234, respectively,
and stops at the first occurrence. Other parameters are opional. By default, WinHex searches the
entire file/disk. The optional parameters work as known from usual WinHex search options.

ReplaceAll "Jon" "Don" [MatchCase MatchWord Down Up BlockOnly Unicode Wildcards]
ReplaceAll 0x0A 0x0D0A [Down Up BlockOnly Wildcards]
Replaces all occurrences of either a string or hexadecimal values in the active file with something
else. Can only be applied to a disk if in in-place mode.

IfFound

 47

A boolean value that depends on whether or not the last Find or ReplaceAll command was
successful. Place commands that shall be executed if something was found after the IfFound
command.

IfEqual MyVariable "constant string"
IfEqual 0x12345678 MyVariable
IfEqual MyVariable MyOtherVariable
Compares two variables, ASCII strings, or hexadecimal values at the binary level. Comparing
two objects with a different length always returns False as the result. If equal, the following
commands will be executed.

Else
May occur after IfFound or IfEqual. Place commands that shall be executed if nothing was found
or if the compared objects are not equal after the Else command.

EndIf
Ends conditional command execution (after IfFound or IfEqual).

{...
ExitLoop
...}
Exits a loop. A loop is defined by braces. Closing braces may be followed by an integer number
in square brackets, which determines the number of loops to execute. This is may also be a
variable or the keyword "unlimited" (so the loop can only be terminated with an ExitLoop
command). Loops must not be nested.

Example of a loop:
{ Write "Loop" }[10] will write the word "Loop" ten times.

Label ContinueHere
Creates a label named "ContinueHere"

JumpTo ContinueHere
Continues script execution with the command following that label.

NextObj
Switches cyclically to the next open window and makes it the "active" window. E.g. if 3 windows
are open, and window #3 is active, NextObj will make #1 the active window.

ForAllObjDo
The following block of script commands (until EndDo occurs) will be applied to all open files
and disks.

CopyFile C:\A.dat D:\B.dat
Copies the contents of C:\A.dat into the file D:\B.dat.

 48

MoveFile C:\A.dat D:\B.dat
Moves the file C:\A.dat to D:\B.dat.

DeleteFile C:\A.dat
Surprisingly, deletes C:\A.dat.

InitFreeSpace
InitSlackSpace
Clears free space or slack on the current logical drive, respectively, using the currently set
initialization settings. InitSlackSpace switches the drive temporarily to in-place mode, thus saving
all pending changes.

Assign MyVariable 12345
Assign MyVariable 0x0D0A
Assign MyVariable "I like WinHex"
Assign MyVariable MyOtherVariable
Stores the specified integer number, binary data, ASCII text, or other variable's contents in a
variable named "MyVariable". If this variable does not yet exist, it will be created. Up to 16
different variables allowed. Another way to create a variable is the Read command.

Inc MyVariable
Interprets the variable as an integer (if not larger than 8 bytes) and increments it by one. Useful
for loops.

Dec MyVariable
Interprets the variable as an integer (if not larger than 8 bytes) and decrements it by one.

MessageBox "Caution"
Displays a message box with the text "Caution" and offers the user an OK and a Cancel button.
Pressing the Cancel button will abort script execution.

ExecuteScript "ScriptName"
Executes another script from within a running script, at the current execution point, e.g.
depending on a conditional statement. Calls to other scripts may be nested. When the called script
is finished, execution of the original script will be resumed with the next command. This feature
can help you structure your scripts more clearly.

Turbo On
Turbo Off
In turbo mode, most screen elements are not updated during script execution and you are not able
to abort (e.g. by pressing Esc). This accelerates the script by up to 75% if a lot of simple
commands such as Move and NextObj are executed in a loop.

Debug
All the following commands must be confirmed individually by the user.

 49

UseLogFile
Error messages are written into the log file "Scripting.log" in the folder for temporary files. These
messages are not shown in a message box that requires user interaction. Useful especially when
running scripts on unattended remote computers.

CurrentPos
GetSize
unlimited
are keywords that act as a placeholders and may be used where numeric parameters are required.
On script execution, CurrentPos stands for the current offset in the active file or disk window and
GetSize for its size in bytes. unlimited actually stands for the number 2,147,483,647.

Appendix C: Disk Editor Q&A

How can I access CD-RW sectors?

DirectCD and PacketCD must not be installed on the Windows system.

How can I access CD-ROM and DVD sectors under Windows 9x?

Please make sure the following requirements are met:

1. A Windows driver of the CD-ROM/DVD drive must be installed. An MS-DOS driver is not

sufficient.
2. The ASPI interface must be installed. Maybe you have to copy the file wnaspi32.dll manually

into your Windows\System directory. The file is to be found on your Windows installation
CD. The shareware program WinZip (available from http://www.winzip.com) is recommended
for extracting files from CAB archives.

3. The CD-ROM/DVD drive must support the way WinHex tries to read sectors. Most of modern
ATAPI and SCSI drives are suitable.

How can I make WinHex detect an installed PC Card ATA Flash Disk/PCMCIA Drive as a
physical disk under Windows 9x?

Windows Control Panel → System → Device Manager → Select your PCMCIA drive → Click
“Properties” → Search for an option with name similar to “Int 13h device”. The actual way to
find this checkbox may vary on different Windows versions. If possible, enable this option and
reboot your computer.

Appendix D: Automatic Data Recovery

 50

1. File Recovery by Name

This is a very easy-to-use data recovery function in WinHex, part of the the Disk Tools menu.
Requires that you have opened a logical drive or a single partition of a physical disk with the disk
editor. Works on FAT12, FAT16, FAT32, and NTFS drives. You may specify one or more
filename patterns that cover all the files you wish to retrieve, e.g.:
 Letter to Mr. Smith.doc
 Invoice*.pdf
 m*.xls
 Image*.gif
 *.tif

Please note that files that were moved to the recycle bin prior to permanent deletion are internally
renamed by Windows, where only the filename extension remains the same. Unlike File
Recovery by Type, File Recovery by Name will also restore the file date & time and its attributes.

Optionally WinHex only recovers files that are explicitly marked as deleted in the file system. It
may be wise not to use that option if you are looking for files that got lost other than by normal
deletion, e.g. due to file system corruption. In that case you can even switch to files that are not
marked as deleted. With that setting you will recover only those files that existed at the time when
the corruption occurred and no duplicates (like previously existing working copies, temporary
files etc.) that were deleted because they were no longer needed.

Alternatively to using the file allocation table of a FAT drive, WinHex can optionally also rely on
files not being fragmented, recovering them as a continuous stream of consecutive clusters.

Check “Intercept invalid filenames” to prevent a failure of the recovery because of filenames with
characters considered as invalid by the file system. Useful for example if you wish to recover files
that had filenames in a non-western language with a western-language Windows version. This
option will rename such a file if necessary to ensure that it can be recreated.

On an NTFS drive, if the file you are looking for cannot be found, it may help to enable the
“thorough” search. It is not enabled by default because it takes significantly more time.

You must also specify an output folder where to recreate the original file(s). Important: make sure
this folder is on a different drive. Specifying a folder on the same drive where you are recovering
from could easily overwrite disk space where deleted files reside that you still wish to recover!
That way they would be lost forever. It might also lead to a loop, if WinHex repeatedly "recovers"
files that it has just recreated.

2. File Recovery by Type

A data recovery function in the Disk Tools menu that searches for those files on any disk or disk
image file that can be recognized by a characteristic file header signature (a certain sequence of
byte values). Because of this approach, File Recovery by Type does not depend on the existence

 51

of functional file system structures. Optionally, only files found in unallocated drive space are
recovered (files that presumably have been lost or deleted). A log file about the selected
parameters is written to the output directory as well. The resulting files are named according to a
pattern you provide (“file~~~~” by default, where the swung dashes are placeholders for an
incrementing number). Optionally, recovered files of each type are put into their own subfolder.
Note that File Recovery by Type will not produce consistent files in case the original files were
stored in a fragmented way (in discontiguous clusters).

Also optionally, a thorough search can be conducted at all offsets, not just at the beginning of
clusters. This is necessary when recovering files from backup files or tapes where they are not
aligned at cluster boundaries. It also renders this recovery method easier to use because you don't
have to care about sector and cluster sizes. This comes at the cost of an increased number of false
positives, though, misidentified file signatures occurring randomly on a media, not indicating the
beginning of a file.

WinHex comes with various preset file type signatures. You may select multiple file types at the
same time for recovery. You may also fully customize the file type definitions and add your own.
Click the Customize button to edit the file “File Type Signatures.txt”. By default, WinHex opens
the file in MS Excel. This is convenient because the file consists of columns separated by tabs. If
you edit the file with a text editor, be sure to retain these tabs, as WinHex relies on their presence
to properly interpret the file type definitions. To find characteristic file header signatures, open
several files of a certain type in WinHex and look for common byte values near the beginning of
the file at identical offset. After editing the file you need to exit the dialog window and use the
File Recovery by Type menu command again to see the changes in the file type list. WinHex will
ignore everything beyond the 16th byte in a header or footer signature, after the 19th character in
a file type description, and after the 11th character in a file type extension. The maximum number
of supported file types is 256.

If no file footer is specified, WinHex will extract the files it finds at the fixed size specified in the
dialog window (usually preferable). Otherwise WinHex will search for corresponding footers
which mark the end of the file, but will not search further after the file header than the number of
bytes specified in the dialog window as the maximum file size.

For example, to extract all JPEG image files, WinHex searches the hexadecimal values FFD8FF
as the file header signature (typed as 0xFFD8FF in the file type definition file to indicate a
hexadecimal as opposed to an ASCII signature). The header offset is 0 because the
aforementioned signature always occurs at that offset within the file and within the file's first
cluster, right at the beginning. Unless you know a footer that is safe to trust (e.g. FFD9 is a valid
footer for JPEG files, but is not safe, meaning it may also occur randomly in the image data, not
only at the end of a file), it is recommended to recover with a fixed file size (the usual size of
your JPG files or more), without a footer. Usually it does no harm to recover with a “too big”
size, since their corresponding application programs can tell from the file format where the actual
end of file is.

3. File Recovery with the Access Button

 52

WinHex offers an advanced way to access its automated file recovery by name, allowing to
conveniently undelete files of any type.

If on a logical NTFS drive you navigate to a file record (beginning with the signature "FILE"),
you may use the Recover command in the Access button's menu to recover the file or directory
described in that record. To find a particular file record, search the NTFS drive for the filename
with the Unicode option enabled or use the directory browser.

Whenever a logical FAT drive is open and a cluster is visible that is allocated to a directory (and
thus contains directory entries), you may use a command in the Access button menu named
"Recover current directory" to replicate that currently displayed directory, with all its files and
optionally its nested subdirectories, regardless of whether they are partially still existing or have
been deleted. WinHex will save all this in a destination folder you specify (strongly
recommended: on a different drive, to avoid overwriting other deleted or lost files). WinHex
assumes that the files have not been overwritten and are not fragmented. This is crucial for a
successful recovery. The file allocation table is only optionally respected, since it is initialized by
the OS in the relevant parts when a file is deleted. You need to carefully check the resulting files
for consistency. Unfortunately, Windows 2000 and XP erase the upper 16 bits of the start cluster
number when deleting files and directories directly (not via the recycle bin).

Within a cluster with directory entries, you may also point the cursor to a short filename entry (or
short directory name) and use another command in the Access button menu to browse to that file
or directory, or to recover that specific file or directory only.

Remember, to find the right cluster with the directory entries in the first place, you could simply
start with the root directory, use Tools | Disk Tools | List Directory Clusters for a specific existing
directory, or search for the short name of a file or directory you lost via text search.

During recovery, WinHex recreates the original hierarchical directory structure and restores the
original file dates, times, and attributes. Long filenames are respected instead of the short 8+3
equivalents where possible. The recovery is strictly read-only on the source disk. The data or file
system on the source disk will not be altered in any way.

4. File Recovery with the Directory Browser

See chapter “Disk Editor”.

Appendix E: Manual Data Recovery

It is possible to restore lost or logically deleted files (or more general: data) that are merely
marked as deleted in the file system, but have not been physically erased (or overwritten).

Open the logical drive where the deleted file resided on using the disk editor. Principally you can
recreate such a file by selecting the disk sectors, that were allocated to the file, as the current

 53

block and saving them using the menu command Edit | Copy Block | Into New File. But it may
prove difficult to find the sectors where the file is still stored. There are two general ways to
accomplish this:

1. In case you know a snippet of the file you are looking for (e.g. the characteristic signature in

the header of a JPEG file or the words “Dear Mr. Smith” in a MS Word document), search it
on the disk using the common search commands (“Find Text” or “Find Hex Values”). This is a
very simple and safe way, and can be recommended to anyone.

2. In case you only know the filename, you will need some knowledge about the filesystem on

the disk (FAT16, FAT32, NTFS, ...) to find traces of former directory entries of the file and
thereby determine the number of the first cluster that was allocated to the file. Detailed
information on file systems is available on the WinHex web site. The following applies to all
FAT variants:

If the directory that contained the file (let's call that directory “D”) still exists, you can find D
on the disk using Tools | Disk Tools | List Directory Clusters. The factory template for FAT
directory entries that comes with WinHex will then be helpful to find out the number of the
first cluster that was allocated to the deleted file in that directory. Otherwise, if D has been
deleted as well, you need to find the contents of D (using the directory entry template) starting
with the directory that contained D.

Deleted files and directories are marked with the character “å” (hexadecimal: E5) as the first
letter in their name.

You may encounter the problem that the file to recover is fragmented, i. e. not stored in
subsequent contiguous clusters. On FAT drives, the next cluster of a file can be looked up in the
file allocation table at the beginning of the drive (simple templates to do this can be found on the
web site), but this information is erased when a file is deleted.

Appendix F: Master Boot Record

The Master Boot Record is located at the physical beginning of a hard disk, editable using the
disk editor. It consists of a master bootstrap loader code (446 bytes) and four subsequent,
identically structured partition records. Finally, the hexadecimal signature 55AA completes a
valid Master Boot Record.

The format of a partition record is as follows:

Offset Size Description
0 8 bit A value of 80 designates an active partition.
1 8 bit Partition start head
2 8 bit Partition start sector (bits 0-5)
3 8 bit Partition start track (bits 8,9 in “start sector” as bits 6,7)

 54

4 8 bit Operating system indicator
5 8 bit Partition end head
6 8 bit Partition end sector (bits 0-5)
7 8 bit Partition end track (bits 8,9 in “end sector” as bits 6,7)
8 32 bit Sectors preceding partition
C 32 bit Length of partition in sectors

Operating system indicators:
(hexadecimal, incomplete list)

00 Empty partition-table entry
01 DOS 12-bit FAT
04 DOS 16-bit FAT (up to 32M)
05 DOS 3.3+ extended partition
06 DOS 3.31+ Large File System (16-bit FAT, over 32M)
07 Windows NT NTFS, OS/2 HPFS, Advanced Unix
08 OS/2 v1.0-1.3, AIX bootable partition, SplitDrive
09 AIX data partition
0A OS/2 Boot Manager
0B Windows 95 with 32-bit FAT
0C Windows 95 with 32-bit FAT (using LBA-mode INT 13 extensions)
0E Logical-block-addressable VFAT (same as 06, but using LBA-mode INT 13)
0F Logical-block-addressable VFAT (same as 05, but using LBA-mode INT 13)
17 Hidden NTFS partition
1B Hidden Windows 95 FAT32 partition
1C Hidden Windows 95 FAT32 partition (using LBA-mode INT 13 extensions)
1E Hidden LBA VFAT partition
50 OnTrack Disk Manager, read-only partition
51 OnTrack Disk Manager, read/write partition
81 Linux
82 Linux Swap partition, Solaris (Unix)
83 Linux native file system (ext2fs/xiafs)
85 Linux EXT
86 FAT 16 volume/stripe set (Windows NT)
87 HPFS fault-tolerant mirrored partition, NTFS volume/stripe set
BE Solaris boot partition
C0 DR-DOS/Novell DOS secured partition
C6 Corrupted FAT 16 volume/stripe set (Windows NT)
C7 Corrupted NTFS volume/stripe set
F2 DOS 3.3+ secondary partition

Appendix G: Surplus Sectors

 55

This term is used in WinHex in the following way:

Surplus sectors on a logical drive are those few sectors at the end that do not add to a full cluster
and thus cannot be used by the OS (and thus by no conventional application program either).

Surplus sectors on a physical disk are those sectors at the end that are located outside the regular
disk geometry scheme (because they do not add to a full cylinder/header/track entity), which is
why they are usually not used by any partition or the operating system (or any conventional
application program).

Surplus sectors have nothing to do with "bad" or damaged sectors or sectors a hard disk internally
uses as a replacement for sectors found to be faulty.

